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1 Introduction

With the advent of Modular Autonomous Vehicles (MAVs), transit agencies can adapt to fluc-
tuating demand by flexibly coupling several MAVs into a Transit Unit (TU) per dispatch. We
further envision the benefit of decoupling TU into MAVs in On-Demand Feeder Transit (ODFT),
which connects a transportation hub and offers door-to-door services to patrons spread over a
distant region. The benefit would come from the reduced routing distance/time to visit N points
within the service region, traditionally accomplished by a single bus vehicle but now by several
MAVs, each covering a subset of N points. However, whether recoupling the MAVs into a TU
on return trips needs careful investigation since additional delays may be caused by waiting for
the last-arrival MAV.

To demonstrate the concept’s effectiveness, we propose an optimal design model to determine
the key operational features for MAV-based ODFT, such as TU sizes at dispatch, dispatch head-
ways, and zone partitions, which can vary spatially to suit non-uniform demand distributions.
The approach of continuum approximation is used to derive analytical expressions of system
metrics including patrons’ routing time, waiting time, and non-stop line-haul travel time, as
well as the agency’s operational costs. Closed-form relationships are obtained for the optimal
conditions, leading to an efficient solution algorithm. Numerical studies show that MAV-based
ODFT consistently outperforms traditional bus-based ODFT (which can be seen as a special
case with no coupling/decoupling functions), with generalized system cost savings exceeding
3%. Notably, the advantage of MAV-based ODFT over its counterpart diminishes when the
routing distance/time variance is large. This underscores the necessity of advanced operational
algorithms to minimize MAV trips’ variance and leverage the flexibility of MAVs in practice.

2 Methodology

We consider a rectangular suburb region R connected to a transportation terminal by a J-km
highway, as shown in Figure 1. The transit agency divides the suburb region of dimensions
L×W into multiple service zones with an area of A(x), which may vary over location denoted
by a two-dimensional vector x ∈ R (x = (0, 0) indicates the entrance/exit of the region).
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The transit agency dispatches the MAVs in Transit Units (TU) with the capacity of S(x)
composed of I ∈ {1, 2, ...,K} number of MAVs with a capacity of c [seats/MAV] each. Here K
is the maximum number of MAVs coupled in one TU. The headway of dispatches is H(x) for
the service zone at x ∈ R. The dispatched TUs first run on the line-haul segment toward the
suburb (called inbound trips). And then, they decouple into individual MAVs to drop off and
pick up patrons following a well-planned traveling-salesman-problem (TSP) tour within service
zones. On the return trips to the terminal (called outbound trips), the MAVs may or may not
be re-coupled into TUs depending on the optimized design for each service zone. If re-coupling
is required, they must wait for the last MAV to finish the drop-offs and pick-ups; otherwise, they
return separately to the terminal after completing their respective tasks in the zone.

The service design of the above-described MAV-based feeder system concerns four decision
functions regarding location x ∈ R. They are the service zone size A(x) [km2/zone], the service
headway H(x) [hour/dispatch], the transit unit (TU) size S(x) ∈ {c, 2c, ...,Kc} expressed in
unit of seats per dispatch, and the indicator δ(x) ∈ {0, 1} denoting the outbound MAVs are
re-coupled in TUs (δ(x) = 1) or not (δ(x) = 0).
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Figure 1 – Layout of modular autonomous vehicle-based on-demand feeder service.
.

We construct the optimal design as a minimization problem of the generalized system cost,
denoted Z, concerning H(x), A(x), S(x), δ(x), x ∈ R. The problem is formulated as below:

minimize
H(x),A(x),S(x),δ(x)

Z =

∫
x∈R

1

A(x)

[
δ(x)

(
1

µ
Co(x) + Cp(x)

)
+ (1− δ(x))

(
1

µ
C̃o(x) + C̃p(x)

)]
dx,

(1a)

subject to:

λu(x)A(x)H(x) = S(x),∀x ∈ R, (1b)
S(x)

c
= I ∈ {1, 2, ...,K} ,∀x ∈ R, (1c)

H(x) ≥ Hmin, A(x) ≥ 0, δ(x) ∈ {0, 1} ,∀x ∈ R, (1d)

where the integrand in Eq. (1a) yields the local generalized system cost per square km, and µ is
patrons’ average value of time that is used to convert monetary cost into the unit of time.

The Co(x), Cp(x) in Eq. (1a) are transit agency cost and patrons’ trip time, respectively,
under services that re-couple MAVs into TUs on the return trips from suburban zone at x to the
terminal; and C̃o(x), C̃p(x) correspond to the cost components without return-trip re-coupling.

The agency costs Co(x), C̃o(x) are computed as follows:

Co(x) = (α+ βS(x))
2D(x)

H(x)V
+ γ

S(x)

H(x)c
E

(
max

i=1,2,...,I
{ti(x)}

)
, (2a)

C̃o(x) = (α+ βS(x))
D(x)

H(x)V
+ γ

[
S(x)

c

D(x)

H(x)V
+

S(x)

H(x)c
E (ti(x))

]
, (2b)
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where the first and second right-hand-side (RHS) terms return operation costs related to vehicle
hours in TUs and MAVs, respectively. The α + βS(x) is the unit operation cost of TUs, which
is determined by a fixed cost, α, and a variable energy cost, β, that is associated with capacity,
S(x). The γ is the unit operation cost of individual MAVs. The D(x) := J + ||x|| is the non-
stop distance between the service zone at x and the terminal. The ti(x) denotes the ith MAV’s
TSP-tour time in the service zone at x. Let σ be the standard deviation of ti(x), we have

E

(
max

i=1,2,...,I
{ti(x)}

)
= E(ti(x)) [1 + τ (x, S(x))] , (3)

where τ(x, S(x)) :=
√
3σ(S(x)−c)
S(x)+c is the ratio between additional time for re-coupling and the

expected TSP time; see the full-length paper for deviation. The E(ti(x)) can be estimated by

E(ti(x)) =
k

V

√
A(x)ov(x) +

k

V

√
A(x)ou(x)

I
, (4)

where the first RHS term yields the expected TSP-tour time of an individual MAV for drop-offs
and the second for pickups; see again full-length paper. The k is a dimensionless constant; the V
is the vehicle’s commercial speed discounted from the cruising speed V to account for delays in
drop-offs and pick-ups; and ov(x) and ou(x) are the vehicle occupancy of inbound and outbound
trips for service zone at x, respectively. They are ou(x) = c, ov(x) =

cλv(x)
λu(x)

, ∀x ∈ R.
Ptrons’ trip time for outbound demand, λu(x), and inbound demand, λv(x), consists of three

components: (i) waiting time for the service to begin, H(x)
2 ; (ii) non-stop traveling time to/from

the terminal, D(x)
V ; and (iii) TSP-tour waiting time. Therefore, we have:

Cp(x) = λu(x)A(x)

(
H(x)

2
+

D(x)

V
+ (1 + τ(x, S(x)))

kc

V

√
A(x)

S(x)

)
+ λv(x)A(x)

(
H(x)

2
+

D(x)

V
+

k

2V

√
A(x)cλv(x)

λu(x)

)
,

(5a)

C̃p(x) = λu(x)A(x)

(
H(x)

2
+

D(x)

V
+

kc

V

√
A(x)

S(x)

)
+ λv(x)A(x)

(
H(x)

2
+

D(x)

V
+

k

2V

√
A(x)cλv(x)

λu(x)

)
. (5b)

Problem (1) is equivalent to the following problem according to the calculus of variations.

minimize
H(x),A(x),S(x),δ(x)

z(x,H(x), A(x), S(x), δ(x)) for each x ∈ R, subject to Eqs. (1b–1d). (6)

We take δ(x) = 1 for illustration and assume for now S(x) = S∗(x), where S∗(x) is the
optimal value of TU size. By constraint (1b), we can rewrite the objective function in (1a) as,

z(x,H(x)|S∗(x), δ(x) = 1) = z(x,H(x), S(x) = S∗(x), δ(x) = 1), (7)

Eq. (7) is a posynomial function regarding H(x), yielding unique global optima in optimiza-
tion.

Ĥ(x|S∗(x), δ(x) = 1) =

(
1 + τ(x, S∗(x))

λu(x) + λv(x)

k

V

(
γ

µ

(√
λu(x) +

√
S∗(x)λv(x)

c

)
+ c
√

λu(x) +
λv(x)

2λu(x)

√
cS∗(x)λv(x)

1 + τ(x, S∗(x))

)) 2
3

.

(8)

Combing the boundary condition (1d) obtains the optimal headway,

H∗(x|S∗(x), δ(x) = 1) = max
{
Ĥ(x|S∗(x), δ(x) = 1), Hmin

}
, (9)

and accordingly the optimal zone size,

A∗(x|S∗(x), δ(x) = 1) =
S∗(x)

λu(x)H∗(x|S∗(x), δ(x) = 1)
. (10)

Substituting (9) and (10) back to the objective function produces the local system cost
function z(x, S∗(x)|δ(x) = 1) with a single unknown S∗(x), which can be found efficiently via
enumeration, i.e.,

S∗(x|δ(x) = 1) = argminS∗(x)∈{c,2c,...,Kc} z(x, S∗(x)|δ(x) = 1). (11)

Similarly, we can find the solution under the condition of δ(x) = 0.
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3 Results and discussions

We use a distance-decaying demand with λu(x) = λu exp(−ηu(||x||)), λv(x) = λv exp(−ηv(||x||)),
where λu = 50, λv = 10 [trips/km2/h], ηu, ηv ∈ {0, 0.1, 0.5} representing uniform, less-heterogeneous
and more-heterogeneous demands. The baseline parameter values are omitted here for brevity.

Figures 2-3 visualize heterogeneous designs of MAV- and bus-based ODFT. As seen, the
optimized MAV-based ODFTs entail larger zone sizes and headways than bus-based systems.
The TU sizes of MAVs increase with distance.

(a) Optimized zone size A∗(x). (b) Optimized headway H∗(x). (c) Optimized TU size S∗(x).

Figure 2 – Optimal designs for MAV-based ODFT (ηu = ηv = 0.1).

(a) Optimized zone size A∗(x). (b) Optimized headway H∗(x). (c) Optimized TU size S∗(x).

Figure 3 – Optimal designs for bus-based ODFT (ηu = ηv = 0.1).

Figure 4 presents MAV-based ODFTs’ cost savings against bus-based systems in different
demand scenarios. We observe that the cost savings increase with the growth of outbound
demand, but decrease with the rising inbound demand. This is because each module of inbound
and outbound MAVs traverses across areas of A(x) and A(x)/I, respectively, meaning that only
outbound demand enjoys benefit from the decoupling of MAVs.
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Figure 4 – Cost savings against bus-based ODFT (ηu = ηv = 0.1).
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