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1 INTRODUCTION

This work studies a mixed transport system where public transport (i.e., transit) and on-demand
vehicles are optimized in a synchronized and integrated manner. This type of system, also known
as On-Demand Multimodal Transit System (ODMTS), has been actively studied in recent years
(Bertsimas et al., 2020, Dalmeijer & Van Hentenryck, 2020, Steiner & Irnich, 2020, Calabro
et al., 2023). The rise of digitalization capabilities, the need to address new and changing
commuting patterns, and the higher customer expectations underscore the potential value of
such systems. Pilot projects have proven the viability of ODMTS in practice (Van Hentenryck
et al., 2023), but modeling and planning these systems at scale remains a challenge, and most of
the studies consider different assumptions to be able to solve such models (Banerjee et al., 2021,
Sumalee et al., 2011). Among others, the large-scale models focus on a deterministic scenario
and consider homogeneous fleets within modal systems (Lienkamp & Schiffer, 2023). One of the
areas for improvement from ODMTS is dimensioning the system capacity accurately. Running
half-empty vehicles or overcrowded ones hinder the offered service level to passengers. Adjusting
the frequency of the transit lines is one way of adapting the system capacity to the demand.
However, this may not be enough, and it is also susceptible to unexpected variations in demand.
We believe that planning and sizing a heterogeneous fleet can be a more efficient approach to
optimize the system capacity and offer a better level of service. This also fits with the needs
of many transit operators to renew their fleets and the model we present can be seen as an
opportunity to make such decisions effectively.

The public transport system is seen as the core part of an ODMTS where demand-responsive
vehicles act as a complement to transit rather than a replacement. Sizing the system’s fleet is
a strategical decision, whereas operating on-demand services is an operational one as they do
not rely on planning in advance. This brings us to formulate the system as a two-stage model
formulation in which we make strategic decisions in the first stage (i.e., system fleet sizing and
scheduling) and operational decisions in the second stage (i.e., planning of on-demand vehicles
and passenger routing) to respond to demand uncertainty.

We address two main research questions in this study:
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1. Can a model for ODMTS with heterogeneous fleet planning decisions and stochasticity in
demand lead to better passenger service levels and lower transport operations costs?

2. What are the benefits this model can bring and how can it operate in practice?

The first question is about how can we leverage the uncertainty realization and additional
operational flexibility to plan the system capacity more efficiently. The second question is about
quantifying the value of integrating on-demand mobility systems into public transportation line
and timetable planning. This value addresses all the actors involved: (i) operational costs for
operators, (ii) passenger level of service for customers, and (iii) environmental and congestion
impact for the society.

This study aims at making the following contributions:

1. New model: Demand-responsive multimodal transit with heterogenous fleet and stochastic
demand: A two-stage stochatic optimization model.

2. Efficient exact algorithm: A solution method based on double (i.e., Benders and Dantzig-
Wolfe) decomposition.

3. High-quality solutions on large real-life instances.

4. Practical impact: Benefits of integrated multimodal planning versus independent planning
of public transport and demand-responsive services.

2 TWO-STAGE STOCHASTIC OPTIMIZATION

We present a two-stage stochastic problem formulation that defines the transit schedule and its
required fleet in the first stage, and plans the on-demand vehicles and passenger routing at the
trip level in the second stage.

min Transit fleet and schedule costs + expected operational and travel costs (1)
s.t. Passenger mode assignment constraints (2)
Mode service operating constraints (3)
Vehicle capacity constraints (4)
Passenger flow constraints (5)

2.1 First stage

The first stage problem covers strategical decisions including, (i) which schedule and (ii) with
which fleet should we operate the transit system, and (iii) which transit lines and/or on-demand
vehicle serve each passenger origin-destination. It minimizes both transit operational costs and
the expected travel costs of passengers.

We consider a set of public transport lines to operate (e.g., bus or tram) formed by a set of
stations that operate in both directions. Each line can operate different schedules at different
frequencies, and with different types of vehicles (differing in capacity).

We divide the passenger demand in different origin-destination pairs and aggregate the de-
mand flow during the operating time period.

Based on this setup, this first stage minimizes, on one hand, the operational costs of operating
the transit schedule, which depend primarily on the frequency (i.e., number of vehicles needed)
and vehicle type used, and on the other hand, the a-priori costs of assigning the aggregated
origin-destination flow to be served by a specific line(s), on-demand vehicle, or both. We model
all these decisions using binary variables and linear constraints ensuring that each line operates
one schedule, and that its capacity can cover the assigned demand.
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2.2 Second stage

The second stage tackles the operations of the on-demand services and the actual routing of the
demand at the passenger level given the transit schedule defined in the first stage. This stage
is divided into a set of scenarios, each scenario corresponding to a different realization of the
passenger demand with a given probability. Each passenger request in this stage is characterized
by an origin, destination, and request time. To capture each passenger’s door-to-door trip, we use
a time-expanded network where each node represents a time instant, spatial location, and mode
of transport. We define multiple sets of arcs defining, walking and waiting time, (off)-boarding
of vehicles and running times of the transport modes. A simplified example of such network is
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Figure 1 — FExzample of a passenger graph.

shown in Figure 1.

The model has one set of binary variables depicting the arcs used by each passenger trip. The
second stage minimises the generalized cost of travel for the passengers (Desaulniers & Hickman,
2007) and the operational costs of the on-demand vehicle routes. We operate the on-demand
vehicles in a first/last-mile or a door-to-door manner, and ensure capacity at the vehicle level
for the transit vehicles. Finally, we link the first and second stage with activating constraints
that link the different transit schedules and demand mode choices to the corresponding arc sets
in the time-space graph.

3 A DOUBLE DECOMPOSITION ALGORITHM

To solve large-scale instances of the model, we exploit the decomposability of problem, and in
particular, of the second-stage graph. First, we can apply Benders decomposition to the entire
two-stage problem. The first-stage problem becomes the Benders Master Problem (BMP) and the
second-stage problem becomes the Benders Sub-problem (BSP). Leveraging this decomposition,
we can reformulate the second-stage problem as a set partitioning formulation where variables
refer to paths instead of arcs in the time-space graph. Each path corresponds to a passenger trip
from origin to destination.

Given the complexity of the second stage, enumerating all path-based variables is not tractable.
Therefore, we opt to generate them dynamically using column generation.

Due to the reformulation, we only convexify the flow-conservation constraints for passenger
trips, meaning that the pricing problem (PP) is a shortest path problem in a directed and
acyclic graph (DAG). Therefore, we can use efficient label-setting algorithms to solve them.
We acknowledge that, when the PP is a pure shortest path problem, column generation does
not provide a benefit in terms of root node relaxation (i.e., solving the root node with column
generation and solving the relaxed version of the original formulation provide equal bounds), but
we foresee to solve the root node faster.

Once the column generation and Benders decomposition procedures converge, if the solution
is still fractional, we solve the integer version of the BSP to guarantee an integer feasible solution.
The BSP formulation is tight in itself, and therefore, we expect the integrality gap to also be
tight.
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Table 1 — Model benchmark comparison.

Transit On-demand Transit Average Number of
ODMTS vs. . . . s
fleet costs service distance users passenger delay direct taxi trips
Deterministic ‘ 0% -21.4% x15.3 -4.3% -27.9%
equivalent
Non-integrated system ‘ +0% -11.8% x1.3 -1.7% -18.6

4 PRELIMINARY RESULTS

We compare our two-stage stochastic model for ODMTS, with two different benchmarks. On
one side, to assess the value of the stochastic optimization, we compare our model with a deter-
ministic equivalent, and on the other side, to evaluate the value of integrating multiple modes
of transport, we compare ODMTS with a system in which transit and on-demand services are
planned separately. The results in Table 1 show a comparison of the out-of-sample solutions in
a relatively small test case (three lines, tens of stops, and hundreds of passengers) in the city of
Zurich, Switzerland. Thanks to the additional planning flexibility, our model is able to drasti-
cally improve the transit ridership while maintaining a similar level of service and without the
need to increase the system capacity. This translates in a significant reduction of the operating
costs (i.e., distance) of on-demand services, which can also translate in reduced consgestion and
pollution.

For the results conducted so far, the model could be solved directly using commercial solvers,
but the decomposition-based method presented is expected to scale real-life city-scale instances
efficiently. We also plan to conduct detailed assessments on the value of fleet heterogeneity and
the potential of ride-pooling on first/last mile on-demand services.

In overall, results suggest that ODMTS can become a relevant solution in the current mobility
ecosystem and provide benefits to users, operators and society as a whole.
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