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1 Introduction

In general perturbed utility discrete choice models (Fosgerau & McFadden, 2012, Allen & Re-
hbeck, 2019), each individual’s decision is modeled as probabilities of choosing discrete alter-
natives and the individual is assumed to optimize choice probability to maximize a so-called
perturbed utility, which is defined as the sum of the expected systematic utility and a convex
perturbation function of the choice probabilities. Formally, it assumes each individual n solves
the following maximization problem:

max
xn∈Bn

v⊤xn − F (xn), (1)

where xn denote the choice probabilities of n across alternatives, v is the vector of systematic
utilities, F denote the convex perturbation function, and Bn is the feasible set of xn. For the
notation simplicity, we drop the index of individual n hereafter.

The perturbed utility model (PUM) has been shown to generalize the additive random utility
model discrete choice model (McFadden, 1981) as well as a range of other models. For example,
when the perturbation function is the Shannon entropy, the derived choice probabilities have the
form of the multinomial logit model (MNL). In spite of its generality, the general PUM allows
identification of the systematic utility components. In particular, parameters in the systematic
utility can be uniquely estimated up to normalization, provided the perturbation function is
convex (Allen & Rehbeck, 2019).

However, to predict the choice probability of individuals, we must also specify a proper per-
turbation function, which is extremely challenging because there is no prior knowledge of its
functional form. Existing studies often resort to predefined simple forms (Fosgerau et al., 2024),
but the resulting misspecification of the perturbation function is prone to sacrifice model fit.
On the other hand, fully nonparametric forms maintain the flexibility required by the pertur-
bation function but are typically hard to estimate (Chen, 2007). In this paper, we propose
a semi-nonparametric form for the perturbation function that retains its generality meanwhile
guaranteeing estimation performance with finite samples. To the best of our knowledge, the
semi-nonparametric approach to the modeling and estimation of perturbation function in PUM
has not been studied in the literature. We establish the identifiability of the resulting PUM,
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develop an efficient estimation approach, and demonstrate its performance through Monte Carlo
simulations.

2 A perturbed utility model with semi-nonparametric perturba-
tion function

We consider a perturbed utility model (PUM) with linear choice probability constraints as follows:

max
x∈RE

+

v⊤x− w⊤F (x), (2a)

s.t. Ax = b, (2b)

where x = (x1, ..., xe, ..., xE) is the choice probability vector of dimension E, and the total pertur-
bation is defined as the sum over component-wise perturbations F (x) = (F (x1), ..., F (xe), ..., F (xE))
with exogenous weights w = (w1, ..., we, ..., wE).

Our proposed perturbation function F (·) for each component is represented by the sum of R
integrals as follows:

F (xe) =

R∑
r=1

µr

∫ xe

0
[σ(αru+ γr)− σ(γr)]du, (3)

where σ(·) is a sigmoidal function, and µr, αr, γr are parameters that satisfy µr > 0, αr > 0, ∀r.
Perturbation (3) is considered semi-nonparametric when R increases with the sample size,

and can approximate the unknown function arbitrarily well (Chen, 2007). Besides, one can easily
verify that the perturbation function (3) is strictly convex as its second derivative

∇2F (xe) =
R∑

r=1

µrαrσ
′(αrxe + γr) > 0, (4)

where σ′(·) is the derivative of sigmoidal function and is strictly positive.
Further, Model (2) generalizes a large variety of choice scenarios in transportation systems.

For instance, when A is the node-link incident matrix and b is the unit demand vector, the
resulting model represents the network route choice problem (Fosgerau et al., 2022).

2.1 Identification

Let ve : RD → R be the systematic utility function of alternative e of attribute vector ze ∈
RD. Then, we define v(z) = (v1(z1), ..., ve(ze), ..., vE(zE)), the vector of systematic utilities, as
a function of alternative attribute matrix z = (z1, ..., ze, ..., zE)

⊤ ∈ RE×D. Accordingly, the
identification problem of Model (2) regards estimating the parameters in both v(·) and F (·). In
what follows, we present the key results upon which we establish the identifiability of Model (2)
with the semi-nonparametric perturbation function (3).

Our first result regards the identification of the perturbation value. Let x∗e(v(z)) denote the
optimal solution of xe for a given z. The following lemma, adopted from Corollary 1 in Allen &
Rehbeck (2019), gives the conditions for F (x∗e(v(z))),∀e to be uniquely determined.

Lemma 1 Suppose i) v(·) is known, convex and everywhere finite, and ii) F (·) is defined as per
Eq. (3) and everywhere finite. Then, for every z1 ∈ supp(z), F (x∗e(v(z

1))) is uniquely determined
if there exists z0 ∈ supp(z) such that x∗e(v(z0)) = 0.

Secondly, we prove the parameters in F (·) are identifiable. To this end, we need to introduce
the notion of functional equivalence (Albertini et al., 1993) as follows:
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Definition 1 (Equivalent perturbation functional) Let F, F̃ be two perturbation functions
defined by Eq.(3), we say F is functional equivalent to F̃ , if 1) R = R̃, equal number of sig-
moidal components; 2) (µ, α, γ) can be transformed into (µ̃, α̃, γ̃) in finite number of interchanging
(µr, αr, γr) with (µr′ , αr′ , γr′) and/or simultaneous sign-flipping of (µr, αr).

We then derive the identification conditions for parameters in F (·) by evoking Lemma 2.2 in
Albertini et al. (1993).

Lemma 2 Suppose i) F (x) is uniquely determined ∀x ∈ [0, 1], and ii) F (·) satisfies the no-clone
condition, i.e., (αr, γr) ̸= ±(αr′ , γr′),∀r ̸= r′. Then, parameters (R,µ, α, γ) are identifiable as
per functional equivalence.

With Lemmas 1 and 2, we finally establish the identifiability of our proposed PUM.

Theorem 1 (Model identification) Under the assumptions of Lemmas 1 and 2, Model (2)
with perturbation function (3) is identifiable in the sense that:

• The systematic utility v(·) is identifiable up to normalization, i.e., i) ∂ve(ze)/∂ze,d ∈
{1,−1} for some attribute d in alternative e; and ii) ve(0) = 0,∀e.

• The perturbation F (·) is identifiable as per functional equivalence.

All the proofs will be included in the full paper.

2.2 Estimation

We develop a least-square estimator for the proposed PUM that is inspired by the method of
sieve proposed by Grenander (1981) and the projection matrix introduced in Fosgerau et al.
(2022). To start with, we impose a linear structure of the systematic utility as v(z) = zβ with
parameter β ∈ RD (i.e., ve(ze) = z⊤e β). Accordingly, the Lagrangian of Model (2) is given by

L(x, η) = (zβ)⊤x− w⊤F (x) + η⊤ (Ax− b) , x ∈ RE
+, (5)

where η are the dual variables for constraints (2b). Let B = diag(1x>0) be the matrix with ones
on the diagonal for positive xe, then the first-order condition can be derived as

B
(
zβ − w ◦ ∇F (x) +A⊤η

)
= 0, (6)

where ◦ denotes element-wise multiplication and ∇F (x) = (∇F (x1), ...,∇F (xe), ...,∇F (xE)) is
the gradient vector of F (x). To eliminate the dual variables, we introduce the projection matrix

P = B − (AB)+AB, (7)

where (AB)+ denotes the Moore-Penrose inverse of AB. Pre-multiplying Eq. (6) by P then
yields the projected first-order condition

P (zβ − w ◦ ∇F (x)) = 0. (8)

Denote θ = (β, µ, α, γ). A fixed point is thus constructed using Eq. (8) as

x = x− P (zβ − w ◦ ∇F (x)) = Ψ(x, θ) (9)

Accordingly, a least-square estimation problem with N samples is defined as

min
θ

1

N

N∑
n=1

||xn −Ψ(xn, θ)||2 (10)

Problem (10) resembles the sieve least-square problem when the number of sigmoidal compo-
nents R increase appropriately with the same size N . We refer detail discussions on asymptotic
normality and convergence properties of sieve least-square estimator to Chapter 3 in Chen (2007).
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3 Simulation study
To demonstrate the proposed model and estimator, we design a toy perturbed utility route choice
model with R = 2, E = 6, unit weight w = 1, and other parameters specified as follows:

β∗ = (0.5, 1.0), µ∗ = (5.0, 2.0), α∗ = (0.5, 1.0), γ∗ = (−0.5, 0.5).

Besides, σ(·) is specified as the logistic function, and each attribute ze,d is uniformly sampled
from the unit interval. We then generate choice probabilities by solving x∗ from problem (2) and
estimate parameters using samples (x∗, z) while fixing β2 = 1.0.

Table 1 – Mean and std. (in brackets) of parameter estimates over 20 replications.

Sample size β1 µ1 α1 γ1 µ2 α2 γ2
RMSE√
N ·RMSE

50 0.4977 4.9196 0.5014 -0.5179 2.0331 0.9959 0.5003 0.2213
(0.0068) (0.1717) (0.0031) (0.0420) (0.0983) (0.0103) (0.0015) 1.5652

100 0.4955 4.9790 0.4996 -0.4933 1.9655 1.0018 0.4998 0.1004
(0.0069) (0.0899) (0.0006) (0.0074) (0.0138) (0.0019) (0.0006) 1.0038

200 0.5003 5.0517 0.4990 -0.4858 1.9660 1.0037 0.4993 0.0715
(0.0007) (0.0291) (0.0006) (0.0065) (0.0134) (0.0016) (0.0006) 1.0115

1000 0.4992 5.0045 0.4997 -0.4957 1.9854 1.0011 0.4998 0.0366
(0.0011) (0.0229) (0.0005) (0.0077) (0.0223) (0.0020) (0.0003) 1.1566

2000 0.5002 4.9973 0.5000 -0.5005 2.0008 0.9999 0.5000 0.0211
(0.0010) (0.0180) (0.0003) (0.0035) (0.0100) (0.0009) (0.0002) 0.9455

As shown in Table 1, the parameter estimates largely recover the true values. Moreover,
the RMSE decreases the sample size. Specifically, when N > 100, the values of

√
N ·RMSE

stabilize around 1, which implies that RMSE decreases at the rate of 1/
√
N and demonstrates

the asymptotic normality property as per Corollary 3.2 in Chen & White (1999).
In the full paper, we will further demonstrate the capability of the proposed PUM to represent

individual demand using real data and exemplify the estimation efficiency. In addition, we will
compare it to other nonparametric and semi-nonparametric methods.
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