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1 INTRODUCTION
The emergence of autonomous vehicles (AVs) introduces engineering and cognitive challenges,
emphasizing the need for trajectory prediction that encompasses understanding of external en-
vironments and internal decision-making mechanisms (Kolekar et al., 2020). The Human-Like
Trajectory Prediction (HLTP++) model, inspired by the cognitive processes of human drivers,
seeks to address these challenges. It integrates visual processing and decision-making function-
alities through a "teacher" model, which employs a neural network with visual pooling reflecting
the brain’s capability to filter and process visual stimuli. Simultaneously, the "student" model
utilizes a novel Spike Neural Network, FA-SNN, to replicate the decision-making efficacy of the
prefrontal and parietal cortex (Louie, 2018, Geisslinger et al., 2022). HLTP++ aims to emulate
the brain’s information handling and decision-making capacity, focusing on adaptability, flexi-
bility, and accuracy, thus contributing significantly to the advancement of AV technology (Dong
et al., 2023). Overall, the contributions of HLTP++ are multifaceted:

(1) The HLTP++ emulates human memory and decision-making for traffic trajectory pre-
diction, featuring a novel visual pooling for dynamic observation adjustment across agents and
scenes. Additionally, we introduce Fourier Adaptive Spike Neural Network (FA-SNN) for han-
dling incomplete traffic data, inspired by neuronal pulse propagation in human brain.

(2) The HLTP++ introduces a heterogeneous teacher-student framework with Knowledge
Distillation Modulation (KDM) for multi-level trajectory prediction tasks. This method dynam-
ically balances loss function ratios, enhancing model training in complex scenarios.

(3) Benchmarking HLTP++ against NGSIM, HighD, and MoCAD datasets reveals it sig-
nificantly surpasses top baselines, showcasing enhanced robustness and accuracy across diverse
traffic conditions, including highways and urban settings. Its performance remains notable under
limited input and missing data scenarios.

2 METHODOLOGY
2.1 Problem Formulation
This study focuses on predicting the trajectory of a target vehicle amidst both autonomous
vehicles (AVs) and human-driven vehicles, tracking the state of each traffic agent at time t as
pit = (xit, y

i
t). Using trajectory data from time [1, Tobs] for the target and observed traffic agents,
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Figure 1 – Illustration of the HLTP++ structure (A), the FA-SNN structure(B), visualization of
the trajectory prediction (C,D).

denoted X = {p0:nt }Tobs
t=1 , the goal is to forecast the future trajectory of the target vehicle with its

probabilistic distribution P (Y |X), where Y = {y0
t }

Tf

t=Tobs+1 ∈ RTf×2 represents the predicted
positions from Tobs + 1 to Tf . Each predicted point y0

t includes potential trajectories and their
likelihood c0,it , ensuring the sum of likelihoods for all possible maneuvers equals one.

2.2 The Teacher Model
Temporal Encoder. In driving, the human brain optimizes decision-making by prioritizing
information, essential for managing its processing capacity and minimizing cognitive load by
focusing on relevant features. Our model adopts an LSTM layer for temporal data processing,
enhanced with a multi-head attention mechanism for efficient attention distribution.
Spatial Encoder. To replicate human drivers’ peripheral monitoring, especially during maneu-
vers, we introduce the Spatial Encoder. It processes time-segmented matrices M ∈ R(n+1)×Tobs

4
×2

using convolutional layers, batch normalization and dropout to extract features. Then the Graph
Attention Networks and ELU activation enhance the spatial features.
Fusion Module. The combined outputs of the Spatial Encoder and the Temporal Encoder are
fused and then fed into the iTransformer architecture to generate fused features. Furthermore,
we use the disparities between temporal and spatial features to generate a loss, denoted as Lst,
which serves as one of the loss functions for training the “teacher” model.
Multimodal Decoder. The decoder of the teacher model, based on a Gaussian Mixture Model
(GMM), accounts for uncertainty by evaluating multiple possible maneuvers and their probabil-
ities. This multimodal structure not only provides different predictions, but also quantifies their
confidence levels, which supports decision-making amidst unpredictability in prediction.

2.3 The Student Model
Visual Pooling Mechanism. We use a novel pooling mechanism with an adaptive visual sector
for data preprocessing. This sector is based on the fact that driver’s visual area is influenced
by speed, which narrows at higher speeds for focused attention and widens at lower speeds for
broader awareness. This makes the driver focus more on the central visual field.
FA-SNN. The FA-SNN is an enhanced version of the traditional SNN model, which mimics the
neural transmission of the brain. The approach is based on the idea that neurons in SNN should
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adapt to different scenarios, which is mainly reflected in the adjustment of the threshold. The
FA-SNN involves four essential processes: Charging, Leakage, Firing and Back propagation.
(1) Charging Process. The current neuron is charged by aggregating input spike sequences from
previous neurons through varying weights at discrete features.
(2) Leakage Process. Neurons experience leakage due to voltage differences in their surroundings.
The internal voltage V of the neuron tends towards an equilibrium voltage U over time t, adhering
to the differential equation U −V = −τ dV

dt , where τ denote the leakage decay rate. After solving
the above equation, we can obtain V (tn) = U − Ce−

tn
τ , where C is a constant. This allows us

to calculate the voltage at the next moment tn+1: V (tn+1) = V (tn + dt) = e−
dt
τ (V (t)− U) + U

(3) Firing Process. The firing process is activated based on the spike magnitude through an
activation function. Given a learnable threshold U0, the voltage V ′(tn+1) can be defined as:

V ′(tn+1) =

{
F (V (tn+1))− U0, V (tn+1) > U0

F (V (tn+1)), V (tn+1) ≤ U0

(1)

where, F is a Fourier Transform.
(4) Back propagation. Due to the discontinuity of the activation function used during SNN
firing, conventional chain-rule differentiation is infeasible. To circumvent this, the gradient G is
redefined, factoring in the spike threshold and introducing parameters like the absolute width
wa, gradient width wg and gradient scale s:

G(V (tn+1)) =
s

wa
× exp

(
−|V (tn+1)− U0|

wa

)
(2)

where wa = U0 · wg, and wg = 0.5, s = 1.0.

2.4 Training

Teacher Training. For the teacher model, we use 3 seconds of observed trajectory for input
and predicting a 5-second future trajectory. The loss function of the teacher model is: Ltea =

Ltea
traj + Ltea

man + Lst, where Ltea
traj =

∑Tf

t

∑C
c LN (P tea

pred, Pgt), Ltea
man =

∑Tf

t

∑C
c LM (M tea

pred,Mgt),
Lst is the temporal-spacial loss from iTransformer. LN represents the Negative Log-Likelihood
(NLL) loss, LM represents the Mean Squared Error (MSE) loss. P tea

pred and Pgt representing the
teacher model’s predicted trajectory coordinates and the ground truth coordinates, M tea

pred and
M tea

gt representing the predicted maneuvers and the ground truth maneuvers.
Student Training. The student model is trained to predict 5-second future trajectories with
fewer input observations. Similar to the teacher model, the student model has its own loss
function Lstu formulated as: Lstu = Lstu

traj + Lstu
man =

∑Tf
t

∑C
c

(
LN (P stu

pred, Pgt) + LM (Mstu
pred,Mgt)

)
, where

P stu
pred and M stu

pred represent the predicted 2D coordinates and maneuvers of the student model.
Moreover, we apply the MSE loss to measure the disparity between the outputs of the teacher
and the student model: Ldis = Ldis

traj + Ldis
man =

∑Tf
t

∑C
c

(
LM (P stu

pred, P
tea
pred) + LM (Mstu

pred,M
tea
pred)

)
. Hence,

the total loss function of the “student” model is formulated as L = Lstu + Ldis.
Knowledge Distillation Modulation. We propose a method for tuning multiple tasks that
evaluates the importance of different loss functions and automatically adjusts the weights for
efficient training based on (Kendall et al., 2018). The tuning loss function is formulated as:

L(W,σt, σm, σs, σd) =
1

2σ2
s

(
1

2σ2
t

Lstu
traj +

1

2σ2
m

Lstu
man) +

1

2σ2
d

(
1

2σ2
t

Ldis
traj +

1

2σ2
m

Ldis
man) + F (σt, σm, σs, σd), (3)

where F equals to logσtσm( 1
2σ2

s
+ 1

2σ2
d
) + logσsσd. To ensure uniformity in the derived equations

from different level-segmenting approach, we modify F as F = log(σtσmσsσd).

3 EXPERIMENT
Our comprehensive evaluation demonstrates HLTP++’s superior performance compared to SOTA
baselines, as detailed in Table 2 B-D. The Human-Like Trajectory Prediction model (HLTP++)
surpasses existing SOTA models across three datasets, particularly excelling in long-distance
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Figure 2 – Visualization of the experiments’ result on NGSIM, HighD, and MoCAD.

trajectory forecasting. Furthermore, as depicted in Table 2 F-H, our model boasts the smallest
parameter count, with the student model having only 129.6K parameters. This represents a
56.91% reduction compared to the previously smallest model, WSiP, while achieving superior
performance. Additionally, ablation studies on the FA-SNN, as shown in Table 2 E, underscore
the importance of utilizing Fast Fourier Transform and adaptive thresholds. Moreover, Table 2
A reveals that before applying Knowledge Distillation Modulation (KDM), there was a signifi-
cant discrepancy between different loss functions. However, post-KDM application, the disparity
between the loss functions narrows to a similar magnitude, and the overall loss decreases. This
indicates the efficacy of KDM in training models with a multitude of loss functions.

4 DISCUSSION
This study introduces HLTP++, a novel trajectory prediction model for autonomous vehicles
(AVs), overcoming prior models’ limitations with a special knowledge distillation framework.
It offers a lightweight, efficient solution that retains accuracy through human-like observation
and prediction capabilities. Empirical results demonstrate HLTP++’s superiority in complex
traffic environments, achieving state-of-the-art (SOTA) performance. Future efforts will focus on
developing models that emulating the complexity of the human brain system, using multimodal
data for improved processing and forecasting.

References
Dong, Jiqian, Chen, Sikai, Miralinaghi, Mohammad, Chen, Tiantian, Li, Pei, & Labi, Samuel. 2023. Why

did the AI make that decision? Towards an explainable artificial intelligence (XAI) for autonomous
driving systems. Transportation research part C: emerging technologies, 156, 104358.

Geisslinger, Maximilian, Poszler, Franziska, & Lienkamp, Markus. 2022. An ethical trajectory planning
algorithm for autonomous vehicles. Nature Machine Intelligence, 5, 137–144.

Kendall, Alex, Gal, Yarin, & Cipolla, Roberto. 2018. Multi-Task Learning Using Uncertainty to Weigh
Losses for Scene Geometry and Semantics.

Kolekar, Sarvesh, de Winter, Joost, & Abbink, David. 2020. Human-like driving behaviour emerges from
a risk-based driver model. Nature communications, 11(1), 1–13.

Louie, Jennifer. 2018. Working memory capacity and executive attention as predictors of distracted
driving.

TRC-30 Original abstract submittal


	INTRODUCTION
	METHODOLOGY
	Problem Formulation
	The Teacher Model
	The Student Model
	Training

	EXPERIMENT
	DISCUSSION

