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1 INTRODUCTION

In recent years, ubiquitous mobile devices have rapidly promoted the development of mobile
crowd sensing (MCS). As a specialization of MCS, vehicle crowd sensing (VCS) harnesses the
sensing capabilities of the built-in sensors in vehicles to collect and analyze data (Xu et al., 2019,
Ji et al., 2023). The VCS system comprises a crowdsourcer, a monitoring center, and vehicles.
There are two types of vehicles: the controlled vehicles guided by monitoring centers and the free
vehicles guided by drivers. Once the monitoring center receives the target sensing distribution
from the crowdsourcer, the controlled vehicles are immediately relocated to their destinations.
In the meantime, the free vehicles can select their preferred cruising areas. Then the question
arises: how to accurately predict the movements of free vehicles and how to allocate controlled
vehicles to achieve the desired target sensing distribution?

A conventional approach for the question is the two-stage predict-then-optimize method
(PTO) which separates the prediction and optimization into 2 stages. However, training the pre-
diction model based on prediction error can lead to inferior decision-making than directly mini-
mizing the decision error (Elmachtoub & Grigas, 2022). To this end, we propose an end-to-end
predict-then-optimize framework by integrating optimization into prediction. This framework
requires computing the gradients of the optimization layer within the deep learning architecture.
In general, there are two methods related to the problem: differentiating the optimality condi-
tion implicitly (Agrawal et al., 2019, Amos & Kolter, 2017) and applying the unrolling methods
explicitly(Sun et al., 2023). The implicit method obtains the gradient directly by differentiating
the Karush-Kuhn-Tucker (KKT) conditions but requires expensive computation. The explicit
unrolling method computes the gradients iteratively which may accelerate the computational
speed and solve large-scale problems, but has not been well explored.

To this end, we develop a novel end-to-end smart predict-then-optimize (SPO) framework
embedded with an unrolling differentiation method for the real-time prediction and vehicle relo-
cation problem to achieve a target sensing distribution. This paper has three major contributions:

1. A novel end-to-end smart predict-and-optimize framework. We construct an end-to-end
framework based on SPO and integrate a quadratic relocation problem as the differentiable
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Figure 1 – The end-to-end SPO framework for vehicle prediction and relocation problem

layer in the neural network. This end-to-end framework is trained by minimizing the task-
specific matching error and allows us to obtain the actual optimal strategy.

2. A comparable unrolling algorithm to differentiate the optimization layer. We apply an un-
rolling method based on ADMM to compute the gradients of the optimization layer, which
can balance the trade-off between the solution accuracy and the computation efficiency.

3. An effective solving approach for large-scale networks. The alternating differentiation
method allows us to solve the large-scale network problem within an acceptable time.

2 METHODOLOGY

The overall end-to-end SPO framework for vehicle prediction and relocation is shown in Figure 1.
The framework consists of two essential modules: a prediction module and an optimization mod-
ule. The prediction module is designed based on the spatial-temporal neural network to predict
the short-term free vehicle demand. The optimization module formulates the relocating problem
for controlled vehicles with an alternating differentiation method adapted from ADMM to gen-
erate the optimal relocation strategy. The ultimate goal is to make the matching distribution
combined by free vehicles and controlled vehicles close to the target sensing distribution.

2.1 Model

2.1.1 Prediction model

For each time interval τ , denote the spatial distribution of free vehicles, controlled vehicles, and
all vehicles as Dτ

f , D
τ
c , Dτ

a respectively, denote the target sensing distribution at time τ as Qτ
a.

The demand for free vehicles D̂τ+p
f at time τ + p is predicted by a two-layer TGCN model with

M lookback windows. Then the target distribution of controlled vehicles can be easily obtained
by D̂τ+p

c = Qτ+p
a − D̂τ+p

f , which will be used in the relocation stage.

2.1.2 Vehicle relocation problem

We aim to satisfy the matching distribution of controlled vehicles D̂τ+p
c in the relocation stage, by

considering the total travel time budget (System Optimal), accessibility constraint (all vehicles

TRC-30 Original abstract submittal



X. Wang, W. Ma 3

can arrive at each time interval), and supply limitation. Denote xτ+p
c,ij as the controlled vehicle

flow from grid i to grid j at time τ + p. Then the relocation problem is formulated in Eq. (1):

minimize
xτ+p
c,ij

Z0 =
1

2

∑
j

∥
∑
i

xτ+p
c,ij − D̂τ+p

c,j ∥22 (1a)

subject to
∑
i

xτ+p
c,ij ≤ Dτ

c,i, ∀i ∈ I, j ∈ J, τ ∈ T , (1b)

(cτij − τ)⊙ xτ+p
c,ij ≤ 0,∀i ∈ I, j ∈ J, τ ∈ T , (1c)∑

i

∑
j

cτijx
τ+p
c,ij ≤ K,∀i ∈ I, j ∈ J, τ ∈ T , (1d)

−xτ+p
c,ij ≤ 0,∀i ∈ I, j ∈ J, τ ∈ T (1e)

where cτij is the travel time from grid i to j at time τ ; K is the maximum total travel time; ⊙ is
the Hadamard product. The variables in the original relocation formulation are then vectorized
and flattened in one dimension and therefore xij ∈ RN×N is converted to y ∈ RN2 , The output
of prediction module D̂τ+p

f is replaced by θ for simplicity. The new objective function is Z1 =
1
2y

TPy + q(θ)Ty, and the four constraints are generalized by: Giy ≤ hi,∀i ∈ {1, 2, 3, 4}.

2.1.3 Integrated model

From the relocation stage, We obtain the actual distribution of controlled vehicles Dτ+p
c by

aggregating y. Note that at time τ+p, all free vehicles have already arrived at their destinations
so the actual distribution of free vehicles Dτ+p

f is easily obtained. Therefore, the actual matching
distribution for all vehicles at time τ+p is represented by Dτ+p

a = Dτ+p
c +Dτ+p

f . The loss function
L for the SPO framework is formulated by minimizing the matching error between Dτ+p

a and
Qτ+p

a . Detailed formulations will be presented in the full paper.

2.2 Solution approach

Inspired by the alternating differentiation framework proposed by (Sun et al., 2023), we develop
an unrolling differentiation method in the optimization layer to obtain the derivatives of pri-
mal variables with respect to the pre-defined parameters θ. We first decouple the constrained
quadratic problem into sub-problems based on ADMM, then update the differentiation of the
primal, slack, and dual variables y, si, µi alternatively. Following the procedures, We obtain the
explicit differentiation function as summarized in Eq. (2) and Eq. (3), detailed derivations will
be presented in the full paper:


yk+1 = −(P +

4∑
i=1

ρGT
i Gi)

−1

(q(θ) +
4∑

i=1

ρGT
i (si − hi) +

4∑
i=1

GT
i µi) (2a)

si,k+1 = ReLU(−1

ρ
µi,k − (Giyk+1 − hi)) ∀i ∈ {1, 2, 3, 4} (2b)

µi,k+1 = µi,k + ρ(Giyk+1 + si,k+1 − hi) ∀i ∈ {1, 2, 3, 4} (2c)

∂yk+1

∂θ
= −(P +

4∑
i=1

ρGT
i Gi)

−1

(
∂q(θ)

∂θ
+

4∑
i=1

ρGT
i

∂si
∂θ

+
4∑

i=1

GT
i

∂µi

∂θ
) (3a)

∂si,k+1

∂θ
= −1

ρ
sgn(si,k+1) · 1T ⊙ (

∂µi,k

∂θ
+ ρ

∂(Gyi,k+1 − hi)

∂θ
) ∀i ∈ {1, 2, 3, 4} (3b)

∂µi,k+1

∂θ
=

∂µi,k

∂θ
+ ρ

∂(Gyi,k+1 + si,k+1 − hi)

∂θ
∀i ∈ {1, 2, 3, 4} (3c)

TRC-30 Original abstract submittal



X. Wang, W. Ma 4

Table 1 – Performance of SPO-A and other baselines in HK dataset

Grid
size

Total
budget

SPO-A(Ours) SPO-C PTO DON

RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

45
8000 9.072 31.623 9.510 31.551 9.563 34.081 14.518 49.655
10000 9.647 31.552 9.541 31.457 9.551 33.987 14.518 49.655
15000 9.059 31.426 9.507 31.431 9.563 34.087 14.518 49.655

68
8000 9.834 33.479 - - 10.701 38.166 15.449 52.643
10000 9.689 32.966 - - 10.519 36.955 15.449 52.643
15000 9.752 33.277 - - 10.547 37.495 15.449 52.643

3 RESULTS

We evaluate the proposed end-to-end SPO framework on the taxi dataset in the Kowloon District,
Hong Kong SAR. The study area is discretized into hexagon grids, and taxi data was collected
from HKTaxi from March 14 to March 22, 2023. We aggregate the taxi demand in each grid every
15 minutes and split the taxi dataset with a ratio of 7:1:1 for training, validation, and testing.
We select 45 and 68 grids to represent mid-size and large-scale networks. The ratio of controlled
vehicles to free vehicles is 6: 4. We compare the proposed SPO model with the alternating
method (SPO-A) with three baseline methods: SPO with an implicit method CVXPY(Agrawal
et al., 2019) (SPO-C), PTO, and the do-nothing method(DON) as presented in Table 1. Results
show that the proposed SPO framework outperforms the benchmarks in large-scale networks,
though slightly under-performs in mid-size networks.

4 DISCUSSION

In this paper, we propose a novel SPO framework for real-time vehicle relocation to realize a
target sensing distribution in vehicle crowd sensing. We embed a quadratic relocation problem
into a neural network and develop an alternating differentiation approach for fast and recursive
solutions. Results show that the proposed framework with the unrolling differentiation method
shows comparable matching performance in mid and large-scale networks. In future work, we will
conduct ablation studies and sensitivity analysis by changing different prediction modules, control
ratios, and target distributions to evaluate the robustness of the proposed SPO framework.
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