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1 Introduction

In recent years, the society has seen remarkable technological advancements in transportation
networks, especially in the realm of automation Mouratidis et al. (2021). Some of these in-
novations include optimal traffic light switching tailored to real-time traffic flow De Schutter
& De Moor (1998), virtual speed limits Khondaker & Kattan (2015), adaptive cruise control
Xiao & Gao (2010) etc. Collectively, these advancements have significantly enhanced the safety,
comfort, and efficiency of the transportation system Shaheen & Finson (2013). A particular
focus has been placed on connected and automated vehicles (CAVs), which have proven to be
highly effective in diverse traffic scenarios, such as merging on-ramps, signal-free intersections,
and speed reduction zones Rios-Torres & Malikopoulos (2016).

Along these lines, recent research has introduced a decentralized framework for operating
CAVs at signal-free intersections, eliminating stop-and-go driving while maximizing throughput
and fuel efficiency Malikopoulos et al. (2021). A subsequent study has explored the coordination
of CAVs at adjacent intersections using a similar controller framework Chalaki & Malikopoulos
(2021). Recently, an extension of this framework aimed to improve the feasibility domain of
the controller when traffic volume increases, employing concepts from numerical mathematics
Tzortzoglou et al. (2024).

In this paper, we integrate the previously defined problem formulation in Tzortzoglou et al.
(2024) and demonstrate its effectiveness at a signal-free intersection in the center of Heraklion,
Crete, Greece. We employed PTV Vissim to illustrate our approach and compare travel times and
stop-and-go events between scenarios operating exclusively with human driven-vehicles (HDVs)
and those with only CAVs.

The remaining of the paper proceeds as follows. In Section 2, we illustrate the problem
formulation, then in Section 3, we present our findings provided by PTV Vissim software, and
finally, in Section 4, we draw some concluding remarks.

2 Problem Formulation
We begin by introducing the control framework of an intersection as illustrated in Figure 1a. In
our setup, we require a coordinator which handles communication between CAVs. We call the
range of the coordinator as control zone. Then, we define z ∈ N paths along the intersection
and define the set of paths as L = {1, ..., z}. Note that in Figure 1a, we have defined 6 paths
but this can easily be generalized to larger intersections. Let us denote the set of vehicles in the
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(a) Schematic of an intersection (b) Signal-free intersection at the center of Heraklion, Greece.

Figure 1

intersection at time t as N (t) = {1, ..., N(t)}. The dynamics and the physical constraints of each
CAV i ∈ N are defined as:

ṗi(t) = vi(t) vmin ≤ vi(t) ≤ vmax, ∀i ∈ N (t) (1)

v̇i(t) = ui(t) umin ≤ ui(t) ≤ umax, ∀i ∈ N (t)

where pi ∈ P, vi ∈ V, and ui ∈ U denote the longitudinal position of the rear bumper, speed,
and control input (acceleration) of the vehicle, respectively.

2.1 Safety Constraints

Before addressing safety constraints, we introduce notation for each path z ∈ L, omitting sub-
script z to reduce ambiguity where possible. Define p0i , p

n
i , and pfi as the entry, conflict, and

exit points respectively for each CAV i. Although in Figure 1a each path z crosses three conflict
points n ∈ {1, 2, 3}, this can be generalized to any number of conflict points.

Define entry time t0i and exit time tfi in R≥0 for CAV i at the control zone. Also, tni is the
time CAV i reaches each conflict point n. Note that vi(t) > 0, pi(t) increases monotonically,
allowing ti = p−1

i to map positions to times, hence determining tni .
Safety constraints include rear-end constraints on the same path guaranteed by (2), and

lateral safety constraints on intersecting paths guaranteed by (3) and (4).

tk(p)− ti(p) ≥ τr, (2)

tni − ti(p) ≥ τℓ, ∀p ∈ [p0i , p
n
k ], (3)

tnk − tk(p) ≥ τℓ, ∀p ∈ [p0k, p
n
i ]. (4)

In (2) the subscript k denotes the vehicle in front of the vehicle i while τr denotes the rear-end
time headway. In (3), we consider a CAV i that reaches the conflict point n after CAV k. Then,
tnk denotes the time CAV k arrives at conflict point n. This constraint ensures that the time
headway between CAV i and conflict point n is greater than or equal to τℓ (lateral time headway)
for the duration until CAV k has successfully passed through conflict point n. In (4), we follow
the same logic as (3) for the case where CAV i reaches the conflict point n before CAV k.

2.2 Control Framework

Assuming known exit times tfi for all CAVs i ∈ N (t), we define Problem 1 as the energy-optimal
control problem where v0i is the initial speed at t0i .
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Problem 1

min
ui∈U

1

2

∫ tfi

t0i

u2i (t) dt,

subject to:
(1), (2), (3), (4),

pi(t
0
i ) = p0, vi(t

0
i ) = v0i , pi(t

f
i ) = pf ,

Problem 2

min
tfi ∈Ti(t0i )

tfi ,

subject to:
(1), (2), (3), (4),

pi(t
0
i ) = p0, vi(t

0
i ) = v0i , pi(t

f
i ) = pf , ui(t

f
i ) = 0.

Problem 1 aims for the minimum control input ui(t) from the entry to the exit of the control
zone. The problem’s solution is described in Malikopoulos et al. (2021), and utilizes Hamiltonian
analysis to provide the optimal trajectories:

ui(t) = 6ϕi,3t+ 2ϕi,2,

vi(t) = 3ϕi,3t
2 + 2ϕi,2t+ ϕi,1,

pi(t) = ϕi,3t
3 + ϕi,2t

2 + ϕi,1t+ ϕi,0,


ϕi,3

ϕi,2

ϕi,1

ϕi,0

 =


(t0i )

3 (t0i )
2 t0i 1

3(t0i )
2 2t0i 1 0

(tfi )
3 (tfi )

2 tfi 1

6tfi 2tfi 0 0


−1 

p0

v0i
pf

0

 . (5)

However, note that Problem 1 assumes tfi is known. To find the optimal tfi for each CAV i, we
utilize Problem 2. At the time t0i of entering the control zone, let Ti(t0i ) = [tfi, t

f
i] be the feasible

range of travel times under the state and input constraints of CAV i computed at t0i . The CAV
aims to solve the time-optimal control problem (Problem 2) to find the minimum feasible exit
time tfi . The solution is iteratively refined by checking and adjusting tfi until all constraints are
satisfied, achieving the optimal exit time and trajectory provided by Problem 1.

As discussed in Tzortzoglou et al. (2024), in scenarios where high congestion is present, solving
Problems 1 and 2 may require piecing together arcs, a process that is computationally intensive.
In such situations, the approach suggests that since the solution to Problem 1 is constrained to
a third-order polynomial, employing a higher-order polynomial may provide a solution. To this
end, we utilize theoretical results from numerical mathematics to construct such a higher-order
polynomial. More specifically, it is proven that if we have n + 1 distinct nodes {x0, . . . , xn}
and n+ 1 corresponding values {y0, . . . , yn}, there exists a unique polynomial f(x) of degree n,
such that f(xi) = yi for all i = 0, . . . , n. Moreover, considering that we know for each CAV i
the position of its entry p0i , the position of the conflict points pni , and its final position in the
control zone pfi , we have at least more than four standard fixed positions along its trajectory.
The goal is to find corresponding times tni and tfi at which a CAV passes through these positions
without violating any safety constraints. After determining these times, we are positioned to
construct a position trajectory polynomial extending the solution domain provided in Problem
1. For an analytical approach of how we select efficient times tni and tfi for the construction of
the trajectory polynomial, see Tzortzoglou et al. (2024), section III.

3 Results
In this section, we present our findings from simulations conducted at a signal-free intersection in
the center of Heraklion, Crete, Greece. As depicted in Figure 1b, our scenario is designed based
on the actual layout of this intersection, which accounts for one-way roads and lack of traffic
signals. We defined a control zone with a 100-meter range and a traffic volume of 1,500 vehicles
per hour. In Figure 2, we analyze the travel times of the first 20 vehicles passing through the
intersection. The blue bars represent travel times for HDVs, while the orange bars show times
for CAVs. The results clearly demonstrate a significant improvement in travel times with CAVs,
typically around 20% . Additionally, we assessed the minimum speeds under different set of initial
conditions. For HDVs, it was evident that the minimum speeds are generally lower, with several
instances of full stops, leading to increased travel times and poorer fuel efficiency. Supplemental
videos can be found on the paper’s website: https://sites.google.com/view/casestudyheraklion.
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Figure 2 – Vehicle Crossing Times

Figure 3 – Vehicle Minimum Speeds

4 Conclusion

We explored a controller framework presented in Tzortzoglou et al. (2024) and applied it to a
signal-free intersection in Heraklion, Crete, Greece. We conducted simulation experiments using
PTV Vissim software considering two cases. In the first case, we consider only HDVs, while in
the second case, we consider only 100% penetration of CAVs. The results showcased a significant
improvement in travel time when we have 100% penetration of CAVs while absorbing stop and
go events, improving fuel efficiency.
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