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1 INTRODUCTION

Shared autonomous vehicle (SAV) systems could be a promising transportation mode in the
near future (Narayanan et al., 2020). In an SAV system, large number of autonomous vehicles
are shared by the society, and they transport people with ridesharing in an optimized manner.
Therefore, it is expected that SAV systems will be more efficient than the current privately
owned vehicles and more flexible than the current fixed-route public transport. In the literature,
the optimization of SAV systems, such as finding optimal routing and ridesharing matching, has
been extensively studied (e.g., Levin, 2017).

How to realize system optimal (SO) states of SAV systems in which travelers and SAV operators
seek their own profit, is also important. To answer this question, number of researches have an-
alyzed market economics or static traffic equilibrium of SAV systems (or related shared mobility
services), proposed promising approaches such as optimal pricing, and obtained several policy
implications (e.g., Ke et al., 2021, Ke & Qian, 2023, Kashmiri & Lo, 2024).

The dynamic natures of SAV systems is also important. For example, temporal demand concen-
tration may cause long waiting time for passengers, and the system administrator have to take
measure for it by charging surge pricing for passengers or providing incentives to SAV opera-
tors in order to improve system’s performance (just like the current ridesourcing systems (Yang
et al., 2020)). In order to find the optimal solutions for this kind of measures, dynamic analysis
of SAV systems are necessary. However, to the authors’ knowledge, mathematically tractable
analysis on this problem is very limited. Existing studies on dynamic operation management of
SAV systems employ complicated methodologies such as deep reinforcement learning (Xie et al.,
2023), Bayesian optimization (Liu et al., 2024), non-equilibrium models (Ramezani & Valad-
khani, 2023). They are very useful to find the optimal solution for specific cases, but they may
not be convenient to find general theoretical implications.

In this study, we mathematically analyze dynamic operation of an SAV system and derive several
properties on the optimal pricing for it. Specifically, we develop a model of SAV systems where the
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behaviors of travelers and SAV operators follow the dynamic user equilibrium (DUE) principle
in a congestible many-to-many network. By analyzing the model, we mathematically derive
dynamic system optimal (DSO) pricing for the SAV system. Then, we prove several theorem on
the optimal pricing and SAV system. Some of the findings can be summarized as follows.

• In the DSO state, travelers may pay congestion toll to SAV operators, and SAV operators
may pay another congestion toll to the road authority.

• The congestion toll is charged when and where the road and/or SAV seat is congested.
• The SAV operation cost including the road toll is fully covered by toll from passengers.
• The optimal SAV fleet size is automatically maintained by toll from passengers.

2 METHODOLOGY

The overview of our methodology is as follows and shown in Fig. 1. First, we develop a DSO
model for SAV systems by modifying Seo & Asakura (2022). Then, we derive the dual problem
of the DSO problem. We mathematically prove that the dual problem can be interpreted as a
DUE model where the optimal pricing are charged to passengers and SAVs.

Figure 1 – Modeling framework

2.1 Dynamic system optimal model

The key assumptions of our DSO model is as follows:

• All travelers use an SAV system.
• Travelers’ time-dependent OD demand is given.
• Travelers’ cost is the weighted sum of waiting time, in-vehicle travel time, and scheduling

cost.
• Each SAV travels through the road network and pickup/drop-off passengers appropriately.
• Each SAV has passenger capacity (e.g., they can transport 2 passengers simultaneously).
• Each road has traffic capacity.
• Each node has vehicle storage capacity that can be interpreted as queueing capacity or

parking capacity.
• SAVs’ cost are the weighted sum of travel distance and fixed maintenance cost.
• The number of SAV is a variable (i.e., we also consider fleet-sizing problem).
• Road and node capacities can be variables (i.e., we can also consider infrastructure planning

problem).

With these assumptions, the underlying network traffic flow model is a point-queue-based dynamic
traffic assignment model with queue length constraints. The model appropriately capture the
important dynamic traffic phenomena of SAV systems, such as temporal and spatial traffic
congestion, passengers’ waiting behavior, empty SAV’s routing to pickup passengers, and detour
due to ridesharing (Seo & Asakura, 2022).
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The model optimizes

• routing of SAVs and passengers,
• SAV fleet size, and
• infrastructure capacities,

to minimize the weighted sum of total travel time of travelers, total travel distance of SAVs, the
SAV fleet maintenance cost, and infrastructure cost.

2.2 Dynamic user equilibrium under optimal pricing

By adopting the approach proposed by Akamatsu & Wada (2017), the aforementioned DSO
model can be transformed as a DUE model under the optimal congestion pricing. In this DUE
model, travelers and SAVs behave to minimize their own cost by taking congestion pricing charged
by certain entities into account. It is proven that their cost satisfies the dynamical version of
Wardrop’s equilibrium condition. The dual variables corresponds to the capacity constraints in
the original problem can be interpreted as a congestion pricing charged to the roads or SAVs.

3 THEORETICAL PROPERTIES

By analyzing the DUE model, we mathematically prove several theorems. For example, in a
DUE state with the optimal congestion pricing, the following properties hold:

1. SAVs may charge congestion pricing to their passengers, and the road administrator may
charge another one to SAVs. The amount varies on time and space.

2. If an SAV has vacant seat, no congestion pricing is charged to passengers who use the SAV
at that time moment. Similarly, if a road is not congested, no congestion pricing is charged
to SAVs that use the road at that time moment.

3. The infrastructure cost is always smaller than or equal to the sum of the congestion pricing
paid by SAVs.

4. The cost of an SAV (i.e., operation cost, fixed maintenance cost, congestion pricing paid to
the road admin) is always equal to the sum of the congestion pricing paid by its passengers.

The property 1 clarifies the flow of money in this two-sided market. The property 2 is qualitatively
consistent to the marginal cost pricing principle. The properties 3 and 4 corresponds to the self-
financing and revenue-neutral principles discussed in the conventional transportation (Nie & Liu,
2010). Among them, the property 4 would be the most significant result, as it implies that the
optimal SAV fleet size can be automatically maintained by charging optimal pricing to the users.

4 NUMERICAL EXAMPLES

To show quantitative features, we have numerically solved the proposed model using actual travel
data in a Japanese city with 9 km x 10 km area and 48000 travelers. Some results are illustrated
in Fig. 2. In Fig. 2a, the optimal toll differs by location reflecting road and demand patterns. In
Fig. 2b, the cost composition for a certain SAV is confirmed; note that the income and expense
is completely balanced as mathematically proven. In Fig. 2c, sensitivity analysis on SAV’s cost
is shown; this kind of results might be useful to plan the future transportation system.

TRC-30 Original abstract submittal



T. Seo, R. Maruyama, K. Wada, Y. Zhou 4

(a) Spatial distribution of
cost charged for SAVs

(b) Dynamic cost composition of a cer-
tain SAV

(c) Sensitivity analysis on SAV cost

Figure 2 – Numerical results

5 CONCLUSION

Theoretical analysis results on SAV systems in dynamic congestible network are obtained. To
the authors’ knowledge, this kind of general results have not been obtained for SAV systems.
The proposed methodology and the results would be useful to plan the future transportation
systems. The future work includes incorporation of other transportation modes, extension to
microscopic/disaggregate models, and analysis on cooperative SAVs (i.e., oligopoly market).
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