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1. INTRODUCTION
Traffic collisions were responsible for 1.19 million deaths worldwide in 2021 (World Health

Organization, 2023). In response to the challenge posed by the scarcity of collision data, the concept
of traffic conflicts has emerged as a valuable tool for evaluating traffic safety. Theoretical frameworks,
including extreme value theory and collision probability analysis, have been employed to validate the
relationship between traffic conflicts and collisions. Safety surrogate measures (SSMs) offer a means
to assess conflict risk, drawing upon data collected by sensors such as cameras, radars, and lidars
installed on various platforms, including drones, roadside units, and vehicles. The extraction of
pertinent information from raw data, including vehicle positioning, speed, and acceleration,
necessitates sophisticated computer vision and data processing techniques, enabling the computation
of diverse indicators essential for comprehensive safety evaluation.

Existing studies have assessed the performance of several risk metrics derived from longitudinal
manoeuvres against four evaluation criteria: accuracy, timeliness, robustness and efficiency (e.g. Lu et

al. 2021). They demonstrated that not a single measure performs well in predicting a traffic conflict

reliably. For instance, they found that metrics performing better in prediction accuracy such as Time-
To-Collision (TTC) or single-step Probabilistic Driving Risk Field (S-PDRF) performed weakly in
timeliness. A significant research gap in literature is the absence of studies evaluating SSMs
performance in different road environments and SSM selection justification for specific context-

dependent applications (Arun et al., 2021). For instance, Tak et al. (2020) found that deceleration-
based metrics perform better for rear-end conflicts than Time-To-Collision (TTC) and distance-based
metrics whereas He et al. (2018) found that modified TTC (MTTC) outperformed TTC and
Deceleration Rate to Avoid a Crash (DRAC). Moreover, studies that include vulnerable road users and
that consider other road types than signalised intersections are lacking in the literature (Arun et al.,

2021). The transferability of common model architectures for conflict prediction across different road
scenarios has not been examined and is essential for industrial deployment of predictive models.

The primary objectives of this study are two-fold: (i) developing a new stacked ensemble learning
model to predict a traffic conflict accurately and assess the transferability of a common model in
different scenarios, and (ii) conducting an exhaustive comparative analysis of various safety surrogate
measures, evaluating their effectiveness in identifying conflicts across three diverse road environments:
(a) junctions in urban areas, (b) segments on high-speed roadways, and (c) vehicle-based highway data.
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The stacked ensemble learning model is trained independently on the three datasets and the stochastic
feature selection algorithm is performed during model training to assess the contribution of each
indicator to measure the true conflict risk. Obtaining the most contributing features to the prediction
enhances the model interpretability and facilitates real-time applications for proactive safety
management and this constitutes a substantial contribution to the existing body of knowledge.

2. METHODOLOGY

2.1. Data acquisition and processing

The most challenging aspect in traffic conflict studies is to detect ‘actual’ traffic conflicts from data
captured by sensors including drones, roadside camera, lidar, radar, etc. The traffic dynamics data for
both junctions and motorway segments were collected using drones in China, while instrumented
vehicles (equipped with radars, cameras and GPS) were employed to gather vehicle-based data on
high-speed roadways in both China and the UK. The initial data processing involved utilising
computer vision to detect vehicles and determine their real-world positions through spatial coordinate
transformation. This facilitated the calculation of velocity and acceleration from which all SSMs were
calculated.

Traffic conflicts were discerned through human judgment, whereby the presence of evasive actions,
such as braking, accelerating or swerving, indicative of manoeuvres undertaken to avert collisions,
served as the basis for detection (Federal Highway Administration (FHWA), 1989). Specifically, 621
conflicts were identified within the urban junction dataset, while 640 conflicts were observed in the
infrastructure-based motorway dataset. Additionally, the vehicle-based motorway dataset recorded 193
conflicts over a cumulative duration of 19 hours of driving. To ensure data equilibrium, optimal
sensitivity and specificity, an equivalent number of non-conflict instances were randomly selected

from each dataset (Yu et al., 2020).

2.2. Selected SSM
Thirteen commonly used SSMs were selected from a total of 28 SSMs in the literature review due to
lack of data availability in real scenarios such as mass of vehicles, the released energy that may affect
vehicle occupants, and the change in total kinetic energy before and after the collision. The selected
SSMs involve time-based, distance-based and deceleration-based measuring metrics. Time-based
metrics include Time-To-Collision (TTC), modified TTC (MTTC), Post-Encroachment Time (PET),
Time integrated TTC (TIT), Time Exposed TTC (TET), Headway (H) and Gap Time (GT). Selected
distance-based metrics are headway, Proportional Stopping Distance (PSD) and Difference of
Stopping distance and Safety distance (DSS). Deceleration-based metrics employed are Deceleration
Rate to Avoid a Crash (DRAC), Potential Index for Collision with Urgent Deceleration (PIUCD) and
Crash Index (CAI). Every SSM is calculated between two vehicles at an instant in time. Furthermore,
the distance and the difference in speed between vehicles were added to the input data for exhaustivity.

2.3. Stacked ensemble learning model

The stacked ensemble learning approach integrates predictions from several machine learning models
into a single meta-learner model to make robust prediction and improve the overall model's
generalisability (Kalule et al., 2023). The robustness achieved in stacked ensemble models results
from leveraging the strengths of different machine learning algorithm as each individual model may
excel at capturing different aspects of the dataset (Kalule et al., 2023). The stacked ensemble learning
model is composed of two layers and presented in Equation 1 and Figure 1. The first layer has three
models running in parallel: (i) Random Forest (RF), (ii) Support Vector Machine Radial (SVM-R),
and (iii)) Deep Neural Network (DNN) composed of three hidden layers. The results generated by
these three models serve as inputs to the second layer which is a Gradient Boosting Machine (GBM)
model whose output is the final binary prediction detecting the presence or absence of a conflict.

Yored =GBM (RF(X),SVMR(X),DNN (X)) #(7

These four models and this architecture were selected for their highest performance among 60
combinations of 25 machine learning and ensemble models tested. Each model in the first layer is
independently trained on the dataset. The models’ outputs create a new training set to train the GBM



forming the second layer. Various hyper-parameter fine-tuning techniques were applied across
different models. The Adam optimizer was utilized for the DNN, while the Grid Search method was
implemented for SVM, RF, and GBM. To mitigate overfitting, an early stop mechanism was
employed. Furthermore, . Train set, validation set, and test set are split according to the ratio 6:2:2.
The following figure presents the architecture of the proposed stacked ensemble learning model.
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Figure 1. Stacked ensemble learning model architecture
2.4. Feature importance assessment methodology
Feature importance evaluation has been performed throughout the stacked model using the Recursive

Feature Elimination (RFE) method. Recursive feature elimination is a process where predictors are
systematically removed from a full set based on their importance scores, which are calculated through

cross-validation (Guyon et al., 2002) . Applying RFE on the three models in the first layer outputs
feature contribution FC ij for each feature i and model ;. Secondly, each model contribution M C j is
computed by applying RFE on GBM model in the second layer as the input features are the prediction
from each model of the first layer. The final contribution C; of each feature i is computed with a

weighted sum as presented in Equation 2.
C;=3]_,MC,FC,; #2)

3. FINDINGS AND DISCUSSION

Table 1 presents the outcomes for both the stacked ensemble learning model and the stochastic GBM
feature selection algorithm. The vehicle-based motorway scenario achieved the highest overall
accuracy of 99.3% with a sensitivity rate of 99% for conflict detection. The infrastructure-based
motorway and urban junctions scenarios also demonstrated relatively high accuracy, reaching 87.5%
and 88% respectively, with a sensitivity rate of 87.9% and 89.6% for correctly classified conflicts.
Vehicle-based scenarios demonstrate high classification accuracy. However, predicting conflicts using
infrastructure-based sensors poses slightly more difficulty. This is attributed to the higher number of
conflicts present in the infrastructure-based data and the higher heterogeneity in driving behaviour
captured by the drones compared to the 5 different drivers collecting the vehicle-based data.
Sensitivity and specificity precision closely mirror the accuracy of predictions, indicating minimal
disparity in false positive and false negative ratios.

Analysis of the ablation study revealed that, Gap Time, DRAC and CAI emerged as the most effective
measures both for infrastructure-based urban junctions and motorway segments data. However,
disparities were observed between motorway segments (infrastructure) and vehicle-based data: while
time-based measures exhibited superiority for the latter, a mix of different measure types was evident
for the former. Conversely, the primary influencing factors for vehicle-based conflict detection
differed from those in infrastructure-based urban and motorway contexts. Specifically, deceleration
rate emerged as more critical in infrastructure-based urban and motorway scenarios, whereas vehicle-
based conflicts were more closely associated with time-based SSMs.



Table 1. Results of the stacked ensemble learning model for each scenario and most contributing

variables

Scenario Accuracy | Sensitivity | Specificity | Most significant variables ranked by
importance

Urban junctions — 0.88 0.896 0.865 GAP, DRAC, CAI, PSD, Speed

infrastructure-based

Motorway segments | 0.875 0.879 0.871 GAP, DRAC, CAI PSD, Speed

-infrastructure-based

Motorway segments | 0.993 0.99 0.986 TTC, MTTC, PET, CIF, Speed

- vehicle-based Variances

This paper highlights the significance of recognising the varying efficacy of SSMs across different
road environments, directly influencing their utility in real-world applications such as Advanced
Driver Assistance Systems (ADAS) or roadside monitoring using smart infrastructure such as sensors
developed by Vivacity Labs for promoting smarter, safe and sustainable cities. However, the study
faced limitations due to the size of the dataset (1454 conflicts over more than 10 hours of video
recording, less than 0.1% of total observations). Future investigations could strengthen the reliability
of findings by expanding the scope to larger datasets. Furthermore, enriching the categorisation of
road environments while considering diverse levels of rurality could yield deeper insights into SSM
performance across various contexts. Subsequent studies can incorporate additional enhancements,
including assigning varying weights to individual ensemble models.

4. CONCLUSION

Different road environments possess different geometry and traffic characteristics, while vehicle
behaviour and kinematics parameters exhibit significant variations in distinct road types. Safety
surrogate measures are widely used safety indicators, albeit their significance and performance in
different road environments are rarely investigated by researchers. This paper not only developed a
novel stacked ensemble learning model to predict traffic conflicts but also ranked SSM importance in
different road scenarios during training, enabling more interpretable uses of black-box algorithms to
avoid the trade-off between accuracy and interpretability. The novel stacked ensemble model achieves
98%, 96%, and 86% prediction accuracy for vehicle-based motorway, urban junctions, and
infrastructure-based motorway respectively. The output of the model could be employed in devising
potential interventions to prevent imminent collisions in real-time.
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