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1 INTRODUCTION

Advancements in information and communication technologies (ICT) have enabled the collection
of massive spatiotemporal traffic data, offering great opportunities to understand and manage
transportation systems. Anomaly detection stands as a crucial task in traffic data analysis, distin-
guishing irregular occurrences such as passenger flow spikes, road congestion, or travel behavior
changes from regular patterns. This detection assists transportation agencies in understanding
system performance and adjusting traffic control plans promptly (Wang & Sun, 2021).

Robust Principal Component Analysis (RPCA) is widely utilized in anomaly detection due
to its simplicity and non-parametric nature (Candès et al., 2011). However, RPCA faces a
fundamental limitation when dealing with spatiotemporal traffic data—it solely relies on the
matrix structure and overlooks the spatiotemporal correlations within the data. To address
this limitation, researchers have integrated additional regularizers (Wang et al., 2018, Chen
et al., 2021) to capture the correlations. However, these regularizers are often constrained by
their functional forms and may struggle to capture complex spatiotemporal patterns. Moreover,
additional regularizers introduce new weight parameters, further complicating the model.

Motivated by the work in image processing (Jin & Ye, 2017), we propose an alternative solu-
tion – leveraging a specialized data structure (e.g., Hankel structure) – to capture the spatiotem-
poral correlations. Hankel structure is a data augmentation technique, where each descending
skew-diagonal from left to right remains constant. Through data repetition, intrinsic tempo-
ral correlation can be naturally captured without requiring nonlocal similarity learning. Unlike
the use of Hankel matrix RPCA in Jin & Ye (2017), we introduce a Hankel-structured tensor
RPCA (HT-RPCA) framework for traffic anomaly detection. This tensor framework captures
correlations in higher dimensions and accelerates estimation in the Fourier domain.

Mathematically speaking, we decompose the raw spatiotemporal traffic matrix into a low-rank
matrix with Hankel constraint and a sparse matrix by solving a convex optimization problem. In
this framework, the low-rank component represents regular patterns while sparisty component
denotes irregular patterns (anomalies). We solve the HT-RPCA model by Alternating Direction
Method of Multipliers (ADMM). Specifically, we apply tensor nuclear norm (Lu et al., 2019) to
approximate the tensor rank and l1 norm to approximate sparsity. To evaluate the performance
of HT-RPCA, we use metro passenger flow collected from Guangzhou, China, to detect unusual
passenger flow at the station level and analyze anomaly propagation within the metro network.
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2 METHODOLOGY

In this study, we introduce a temporal Hankelization operator Hτ with a temporal delay em-
bedding length τ . This operator transforms a given spatiotemporal matrix X ∈ RN×T to a
third-order Hankel tensor X = Hτ (X) ∈ RN×(T−τ+1)×τ , defined as follows:

X :,:,t = X :,t:t+T−τ+1 ∈ RN×(T−τ+1), t = 1, . . . , τ. (1)

Correspondingly, the inverse Hankelization operation H−1
τ transforms a Hankel tensor X back

into a matrix X̂ by averaging the corresponding entries in the Hankel tensor (Wang et al., 2023).
We denote the spatiotemporal data collected from N locations/sensors over T timestamps by

M ∈ RN×T . We assume that the corrupted matrix M can be decomposed into a low-rank matrix
L ∈ RN×T with Hankel constraint, where L = H−1

τ (L). Here, L is a low-rank Hankel tensor in
RN×(T−τ+1)×τ , and S ∈ RN×T is a sparse matrix. Using the temporal Hankelization operator, we
transform the matrix-based RPCA problem into a tensor-based RPCA problem. Therefore, the
HT-RPCA model can be formulated as the following optimization problem: minL,S rank(L)+
γ∥S∥0 with appropriate constraints. In our model, we use tensor nuclear norm (TNN), denoted as
∥ · ∥∗, calculated in the Fourier domain to approximate the tensor rank. This choice is motivated
by its ability to provide a tight convex relaxation of the tensor average rank (Lu et al., 2019).
Additionally, we use the l1 norm to approximate the sparsity of the matrix. The optimization
problem for our HT-RPCA model is formulated as follows:

min
L,S

∥L∥∗ + γ∥S∥1, s.t. L = Hτ (L) and L + S = M . (2)

The convex optimization problem in (2) can be efficiently solved using the Alternating Direc-
tion Method of Multipliers (ADMM) framework. The augmented Lagrangian function is defined
as:

L(L,S,E) = ∥L∥∗ + γ∥S∥1 +
ρ

2
∥M −H−1

τ (L)− S∥2F + ⟨M −H−1
τ (L)− S,E⟩, (3)

where ρ > 0 is a penalty parameter and E is a dual variable. The optimization problem (2) can
be solved iteratively using (3). The updates for variables L, S, and E at the ℓth iteration are
as follows:

Lℓ+1 : = argmin
L

1

ρ
∥Lℓ∥∗ +

1

2
∥Lℓ −Hτ (M

ℓ − Sℓ +
1

ρℓ
Eℓ)∥2F

= D1/ρ(Hτ (M
ℓ − Sℓ +

1

ρℓ
Eℓ)).

Sℓ+1 : = argmin
S

γ

ρ
∥Sℓ∥1 +

1

2
∥Sℓ − (M ℓ −H−1

τ (Lℓ+1) +
1

ρℓ
Eℓ)∥2F

= Sγ/ρ(M
ℓ −H−1

τ (Lℓ+1) +
1

ρℓ
Eℓ).

Eℓ+1 = Eℓ + ρℓ(M −H−1
τ (Lℓ+1)− Sℓ+1).

(4)

Here, D·(·) denotes the tensor singular value thresholding (Lu et al., 2019), and S·(·) denotes the
soft shrinkage operator (Candès et al., 2011). To accelerate the estimation process, we adjust
the penalty parameter as ρℓ+1 = βρℓ, where β ∈ [1.0, 1.2]. The algorithm stops when it meets
the convergence criterion, with a stopping threshold denoted as tol :

||M −H−1
τ (Lℓ+1)− Sℓ+1||F
||M ||F

< tol, (5)

The proposed model has three parameters: the Hankel delay embedding length τ , the low-
rank and sparse trade-off parameter γ, and the penalty parameter ρ. Given that traffic data
often display weekly patterns due to regular human behavior, τ can be set to the length of a
week to capture this periodicity. The choice of γ depends on the specific application, and ρ is
typically a small number (e.g., 1× 10−5) as it updates at each iteration.
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3 RESULTS

To evaluate HT-RPCA’s performance, we use boarding passenger flow data from Guangzhou
metro stations in China, covering 159 stations in July 2017 at a 15-minute resolution. Repre-
sented as a matrix M ∈ R159×(72×20), the dataset excludes data from 0:00 a.m. to 5:45 a.m. (no
services) and weekends (travel behaviors differ). We compare the proposed model with RPCA
(Candès et al., 2011) and RPCA with Toepliz temporal regularizer (RPCA-TV) (Wang et al.,
2018). Given the unavailability of anomaly labels in public transit, we define anomalies as devia-
tions from the expected passenger flow, excluding periodic fluctuations. Specifically, an anomaly
at station n at time t on day k occurs when

Mk
n,t > M̄n,t + ξσn,t, or Mk

n,t < M̄n,t − ξσn,t, (6)

where M̄n,t =
∑K

k=1M
k
n,t/K is the average passenger boarding flow in station n at time t during

K days, σn,t is its standard derivation, and ξ is a parameter to control the standard derivation.
Figure 1 shows the results of anomaly detection from the sparse matrix S of two selected

stations (JNX and XMK). Two conclusions can be drawn: (i) All three models can detect almost
all anomalies except for the one highlighted in the green patch (23:45 on July 26th at XMK
station). Detecting anomalies accurately becomes challenging when passenger flow is minimal,
as in this case where only 4 passengers are present, making it inaccurate to rely on statistical
measurements like Equation (6). (ii) The anomaly passenger flow obtained from the RPCA and
RPCA-TV models fluctuates much more compared to the proposed method. This indicates that
the proposed method can accurately detect anomalies with fewer false alarms. This advantage
stems from incorporating the Hankel tensor structure to capture more correlations from higher
dimensions, such as periodic information within the data.
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Figure 1 – The anomaly detection results in metro passenger flow. Blue line: the raw passenger
flow; red line: the anomaly passenger flow obtained from the models. The gray patches represent
the anomaly occurrence defined in (6) when ξ = 2.

We observe a similar anomaly pattern at stations JNX and XMK, beginning at 17:30 and
ending at 18:30. Building on this observation, we proceed to analyze anomaly propagation
through the metro network. Figure 2 illustrates the spatial distribution of anomalies from 17:00
to 19:00 on July 26th. Prior to anomalies occurring at JNX and XMK, the boarding passenger
flow at several nearby stations experiences a slight increase at 17:15. Subsequently, the boarding
flow at some stations, including JNX and XMK, abruptly drops (indicated by purple dots) at
17:30. This phenomenon rapidly spreads to more stations along the same metro line within 15
minutes. After the short interruption, the boarding flow of affected stations starts to increase
until 18:30. Interestingly, the anomaly has delayed occurrence at a few stations far from JNX
and XMK at 18:00 and 18:15. The duration of the entire anomaly spans 1 hour, consistent with
the raw boarding flow data for JNX and XMK depicted by the blue line in Figure 1.
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Figure 2 – The spatial distribution of anomalies on July 26th. The red circles are JNX and XMK,
and the red title represents anomaly timestamp.

4 DISCUSSION

This study proposes an enhanced tensor version of RPCA model for anomaly detection in spa-
tiotemporal traffic data. By incorporating temporal Hankel delay embedding, the model can
capture additional dependencies, such as periodic information, thereby enhancing its robustness.
There are some directions for future work. Firstly, we can incorporate the causality of anomaly
into a forecasting model to improve prediction accuracy. Secondly, the computational cost of
updating the tensor nuclear norm is significant due to SVD computations. Hence, we can apply
faster SVD strategies or nonconvex methods to accelerate the algorithm. Thirdly, we can also
leverage the spatial constraint, e.g., topology information, into the model to capture the spatial
correlations. These enhancements will further strengthen the model’s capabilities and extend its
applicability to real-world traffic analysis scenarios.
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