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1 INTRODUCTION

The proliferation of digital technologies has enabled online service providers to amass unprece-
dented access to user data, which companies across industries have leveraged to implement per-
sonalized offerings and pricing (Lei et al., 2023). In ride-hailing, platforms optimize personalized
decisions to enhance revenue, but this raises significant privacy concerns.

Specifically, the risk of third-party impersonation and de-anonymization attacks threatens
both platforms and users by enabling the inference of sensitive parameters and personal de-
tails. Despite growing consumer demand for data privacy protection, existing techniques like
anonymization suffer limitations in providing rigorous guarantees and maintaining utility (Chen
et al., 2022).

To address these shortcomings, this study proposes a mathematically rigorous privacy pre-
serving approach for personalized pricing and matching optimization within ride-hailing plat-
forms. Leveraging differential privacy, the proposed method utilizes bounded Laplacian mecha-
nisms and parallel composition to safeguard traveler privacy and platform’s sensitive operational
data with limited impact on platform revenue optimization. Extensive numerical experiments
are conducted to validate the efficacy of the approach in preserving privacy without significantly
compromising expected revenue.

2 Personalized Pricing and Matching Model

This section presents the personalized pricing and matching problem formulation for a ride-
hailing platform aiming to maximize revenue. The platform receives personal information xi

about each traveler i, which can include factors such as origin, destination, ride history, credit
card information, and other relevant information. These factors influence the traveler’s decision
to use the ride-hailing service. The platform offers each traveler i a personalized price pij and
expected waiting time wij for the service matched to driver j. The traveler’s utility uij depends
on xi, pij , and wij , captured by parameters αi, βi, and γi, which respectively characterizes the
intrinsic value of traveler i obtained from using the service, traveler’s sensitivity to the price
and sensitivity to the waiting time. The platform’s decision-making involves batch processing of
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ride requests, solving an optimization problem to match travelers with drivers, determining the
personalized service price. The platform’s revenue maximization problem is given as below.
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M∑
i=1

N∑
j=1

pijyij(
e
∑N

j=1((α
T
i xi−βT

i xipi−γT
i xiwij)yij)

1 + e
∑N

j=1((α
T
i xi−βT

i xipi−γT
i xiwij)yij)

) (1)

subject to
N∑
j=1

yij ≤ 1 for i = 1, 2 . . .M (2)
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yij ≤ 1 for j = 1, 2 . . . N (3)

yij ∈ {0, 1} (4)

pij ≤ puij (5)

pij ≥ plij (6)

The objective function of the optimization model is to maximize the platform’s total expected
revenue. Constraints (3) and (4) ensure that each passenger is matched with at most one driver,
and each driver is matched with at most one passenger. Constraint (5) specifies the binary nature
of the matching decision variable. Constraints (6) and (7) require the price charged to each rider
to be within an acceptable range.

It is important to note that this model relies on travelers’ personal information to enable
personalized pricing and matching, which poses a risk of exposing traveler privacy and platform
decision-making strategy. This study proposes a novel method that not only achieves robust user
privacy preservation, but also has a limited impact on the platform’s expected revenue.

3 Methodology

3.1 Preliminaries on Differential Privacy

Differential privacy is a mathematically rigorous framework for quantifying and preserving pri-
vacy, which ensures the practical infeasibility of distinguishing between databases that differ by
only a single entry, through the careful injection of calibrated noise into the outputs of differen-
tially private algorithms (Dwork et al., 2006).

Definition 1 ϵ-Differential Privacy. For ϵ > 0, a randomized algorithm F satisfies ϵ-differential
privacy if for every pair of neighboring databases X ,X ′ and all subsets S ⊆ Range(F), it holds
that

Pr[F(X ) ⊆ S] ≤ eϵPr[F(X ′
) ⊆ S]

The privacy parameter ϵ controls the degree of privacy provided by the differential privacy
definition, with smaller values requiring higher similarity in algorithm outputs and thus stronger
privacy guarantees. Differential privacy is commonly employed to address specific queries. The
most straightforward approach to achieving differential privacy for such queries is by introducing
random noise, such as the Unbounded Laplace mechanism, to their answers.

Definition 2 Unbounded Laplace Mechanism. For a function F mapping datasets X to real
numbers, the following definition of F̂(X ) satisfies ϵ-differential privacy:

F̂(X ) = F(X ) + Lap(
s

ϵ
)
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3.2 Privacy-Preserving Personalized Pricing and Matching Approach

To address the limitations of standard differential privacy techniques, this paper proposes a
privacy-preserving personalized pricing and matching approach that utilizes a bounded Laplace
mechanism combined with parallel composition (Holohan et al., 2018). A key limitation of
standard approaches is that they can introduce excessive noise (Tan & Yang, 2024), which
reduces data usability and ultimately decreases the platform’s expected revenue. The idea of
our proposed method is to design a query mechanism F that maps the database X to a finite
codomain Y, ensuring the noisy outputs can be meaningfully mapped back to the original domain,
in contrast to the unbounded noise of the traditional Laplace mechanism.

Definition 3 Bounded Laplace(BL) Mechanism. Formally, for any parameters y ∈ [yl, yu], b >
0, a random variable is a BL mechanism (Z ∼ BL(y, [yl, yu]; b) ) if its probability density function
is

fBL(z) =

{
exp(− |z−y|

b )/
∫ yu
yl

exp(− |v−y|
b )dv, if z ∈ [yl, yu]

0, otherwise

In this study, we employ the Bounded Laplace mechanism to preserve privacy for the per-
sonalized pricing pij and expected waiting time wij , which are bounded within specific intervals.
For pricing, we introduce the parallel composition approach due to disparities in price bounds,
partitioning the personalized prices into homogeneous chunks and applying the Bounded Laplace
mechanism separately within each chunk to achieve ϵ1-differential privacy. For waiting time, we
can directly apply the Bounded Laplace mechanism to achieve ϵ2-differential privacy, as we only
consider drivers within a certain distance during matching. The detailed algorithm is provided
in Algorithm 1.

Theorem 1 Parallel Composition. Formally, if the privacy-preserving personalized mechanism
Fi satisfies ϵ1-differential privacy and if the personalized prices dataset P is split into k chunks
such that P1∪P2∪ . . .∪Pk = P, then the sequence of Fi(X ∩Pi) satisfies ϵ1-differential privacy.

Algorithm 1: Personalized Pricing and matching
Input : (i)personal information set X , (ii) privacy budget for price ϵ1 and privacy

budget for waiting time ϵ2, (iii) parameter set C
Output: (i)privacy-preserving personalized price p̂i for traveler i, (ii)privacy-preserving

waiting time ŵij for traveler i matching driver j

1 Step 1: Optimization: Compute the personalized price p∗i for all traveler and obtain the
matching result with waiting time w∗

ij if traveler i is matched with driver j;
2 Step 2: Privatization of price: for All p∗i ∈ P do
3 Step 3: Partition the obtained set of personalized price set P into different chunks,

where prices p∗i ∈ P with the same lower and upper bounds will be assigned to the
same chunk;

4 Step 4: Calculate the global sensitivity of each chunk;
5 Step 5: For each chunk, a bounded Laplace mechanism with a privacy budget of ϵ1 is

applied separately, resulting in a privatized personalized price p̂i.;
6 end
7 Step 6: Privatization of waiting time: for All w∗

ij ∈ W do
8 Step 7: Calculate the global sensitivity of W;
9 Step 8: On the set of waiting times W, the bounded Laplace mechanism with a

privacy budget of ϵ2 is employed, resulting in a privatized personalized waiting time
ŵij ;

10 end
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4 Results and Discussion

A series of numerical experiments are conducted to demonstrate the effectiveness of the proposed
algorithm. Four different methods are compared: (1) without any privacy protection, (2) using
the traditional unbounded Laplace mechanism for privacy protection, (3) using the bounded
Laplace mechanism and parallel composition for privacy protection, and (4) without personalized
pricing and waiting time.

The numerical experiments are conducted on the 2017 Haikou City ride-hailing platform
dataset. Since the dataset does not include user personal information, we employed a setup
similar to prior work (Zha et al., 2018), where user personal information is a two-dimensional
vector with each dimension randomly generated. We conduct the experiments during both peak
(July) and off-peak (December) seasons (note that Haikou is a tourism city), with different
parameter settings for the traveler utility function. The final experimental results are shown in
the figure below.

(a) Peak Season (b) Off-peak Season

Figure 1 – Expected Revenue of Haikou

As illustrated in Figure 1, the adoption of the traditional unbounded Laplace mechanism
would introduce excessive noise, significantly impacting the company’s revenue, which could
even fall below the expected revenue without personalized pricing. In this scenario, the company
would be unlikely to prioritize user privacy protection. In contrast, the use of the bounded
Laplace mechanism does not seriously affect the company’s optimal expected revenue, which
remains higher than the revenue without personalized pricing. Given the limited impact on
expected revenue, the ride-hailing platform, considering the potential user attrition, business
strategy loss, and ethical and legal risks associated with user privacy risk, can effectively address
these issues by adopting the approach proposed in this study.

References
Chen, Xi, Simchi-Levi, David, & Wang, Yining. 2022. Privacy-preserving dynamic personalized pricing

with demand learning. Management Science, 68(7), 4878–4898.
Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, & Smith, Adam. 2006. Calibrating noise to sensitivity

in private data analysis. Pages 265–284 of: Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. Springer.

Holohan, Naoise, Antonatos, Spiros, Braghin, Stefano, & Mac Aonghusa, Pól. 2018. The bounded laplace
mechanism in differential privacy. arXiv preprint arXiv:1808.10410.

Lei, Yanzhe, Miao, Sentao, & Momot, Ruslan. 2023. Privacy-preserving personalized revenue manage-
ment. Management Science.

Tan, Chaopeng, & Yang, Kaidi. 2024. Privacy-preserving adaptive traffic signal control in a connected
vehicle environment. Transportation research part C: emerging technologies, 158, 104453.

Zha, Liteng, Yin, Yafeng, & Du, Yuchuan. 2018. Surge pricing and labor supply in the ride-sourcing
market. Transportation Research Part B: Methodological, 117, 708–722.

TRC-30 Original abstract submittal


	 INTRODUCTION
	Personalized Pricing and Matching Model
	Methodology
	Preliminaries on Differential Privacy
	Privacy-Preserving Personalized Pricing and Matching Approach

	 Results and Discussion

