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1 INTRODUCTION
Transportation is a major contributor to pollution, partially due to high congestion levels and
inefficient vehicle usage. Ride sharing services such as Dial-A-Ride (DAR) can mitigate these
impacts by increasing vehicle occupancy and decreasing total driving time. Dynamic DAR
services consider real-time requests so require real-time routing optimisation. However, many
studies do not account for the variability of travel times caused by dynamic traffic states (Ho
et al., 2018). This is especially important for services with shared rides as users may experience
congestion delays during their desired trip and while detouring for other customers. To estimate
dynamic travel times Network Macroscopic Fundamental Diagrams (NMFDs) can be used to
model traffic states in approximately homogeneous networks (Daganzo & Geroliminis, 2008). To
further reduce environmental impacts while also decreasing operator fuel and maintenance costs
DAR services can utilise Battery Electric Vehicles (BEVs) (Sperling, 2018). Since the charging
time of BEVs is significant compared to refueling this introduces additional constraints for the
DARP. As BEVs become more widespread stochastic charging demand may result in queuing at
facilities (Tran et al., 2021). This can be considered through estimating queue arrival rates and
associated waiting times, but is often not included in DAR routing.

A real-time shared ride multi-depot DAR service is presented where vehicle speeds are variable
with time. Speeds are estimated through accumulation based NMFDs in statically partitioned
regions, similar to Beojone & Geroliminis (2023) with the addition of microscopic modelling of
DAR operations. This abstract considers vehicles with internal combustion engines; however, in
the full version of the paper, a service fleet of BEVs with charging facility selection and scheduling
optimisation will be included. The charging facilities will be capacitated and a queuing model
will be used to estimate waiting times at each facility considering stochastic charging demand
from private BEVs. The key contribution of the final paper is the joint consideration of the
regional dynamic traffic model and stochastic queuing model at charging stations. The objective
function considers conflicting priorities of the operator and users, and sensitivity to objective
parameters will be further investigated in the full paper.

2 METHODOLOGY
In this section, we briefly present the mathematical formulations for the proposed DAR frame-
work. Due to the space limit, more details and explanations of the developed methodology will
be presented in the full paper. The MINLP formulation is based on the 3-index scheduling formu-
lation of Cordeau (2006) with the addition of existing onboard and scheduled requests inspired by
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Hosni et al. (2014) and Hua et al. (2022). All service vehicles k ∈ K are assumed to be homoge-
neous with capacity Q. Every planning step the DARP is defined on a directed graph G = (V,E)
with relevant nodes V = {O ∪ P ∪D ∪ F} and relevant edges E = {(i, j) ∀ i ∈ V \F, j ∈ V \O}.
The node sets are the step’s initial vehicle locations O = {ok | k ∈ K}, unserved pick-up nodes
P = {1, ..., n}, unserved drop-off nodes D ⊇ {1 + n, ..., 2n}, and candidate depots F. A request
with pick-up i and drop-off i + n appears at time ei with node service duration si, passenger
pick-up demand qi, drop-off demand qi+n = −qi, and expected private vehicle trip duration ri.
Requests can be re-assigned until a vehicle is en-route to their pick-up i, (i, i + n, k) ∈ PS, or
drop-off j, (i, j, k) ∈ PO (Eq. 3). New requests PN that arrived since the last simulation step
may be rejected and if accepted must be served (Eq. 4 and 5). The two binary decision variables
are yi, whether the request at i is accepted, and xki,j , whether vehicle k traverses edge i, j. Other
variables are wk

i , the load of vehicle k leaving node i (Eq. 12), and uki , the time vehicle k arrives
at node i (Eq. 14). Each edge (i, j) ∈ E has length di,j and predicted travel time ti,j .

NMFDs for each time step were pre-calculated across eight static regions as in Tran et al.
(2024). The operator is assumed to have more accurate traffic information than the users so
ti,j is calculated at each step from the regional NMFD velocities vr while ri is calculated from
the average network NMFD velocity v at ei. Regional travel times are calculated for every link
in the real network with t = vr/d, then Dijkstra’s algorithm is used to find the shortest travel
time ti,j ∀ i, j ∈ E. For the expected travel time of user i velocity is constant across all links so
Dijkstra’s algorithm is used to find the shortest distance di,i+n, then ri = v/di,i+n. Vehicles may
finish their route at any of the candidate depots with available capacity (Eq. 10 and 11). The
multi-depot constraints are based on the formulation of Bongiovanni et al. (2019) in preparation
for integrating the BEV fleet.

Maximise M +
∑
i∈PN

yi(f0 + f1di,i+n + f2ti,i+n)−
∑
k∈K

∑
i,j∈V

δ ti,jx
k
i,j (1)

Minimise N +
∑
k∈K
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(i,j,−)∈P∪PO
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ϕxk
i,vqi
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uk
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)
+

∑
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k
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max{0, qi} ≤ wk
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ei ≤ uk
i ≤ uk
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The objective functions maximise the operator’s accumulated profit (Eq. 1) and minimise ac-
cumulated user dissatisfaction (Eq. 2). The first function is the accumulated profit M plus
income from newly accepted requests (comprising flag fare f0, distance rate f1, and time rate
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f2) less the operational cost δ [$/min] of planned driving time. The second function is the ac-
cumulated penalty from completed and rejected requests N plus the planned user delay penalty
ϕ [$/min-person], calculated as the time difference between expected ride completion and ac-
tual ride completion multiplied by passengers in the request, and a request rejection penalty
γ [$/request]. To solve the DARP these functions are combined with weights ω and 1 − ω re-
spectively (Eq. 16). The expanded formulation including battery constraints and queue modelling
will be discussed in the full paper.

Maximise ω(Eq. 1)− (1− ω)(Eq. 2) (16)
s.t. Eq. 3− 15

3 INITIAL RESULTS
Requests were randomly generated with arrival times following a uniform distribution from
8:00 am to 10:00 am (the entire simulation period) and demands between one and four (vehicle
capacity). The scenario size refers to the total number of requests received over the simulation
period. Candidate depot locations were chosen as existing publicly available charging stations.
The locations of service vehicles at 8 am were randomly selected from these candidates while ob-
serving depot capacity. The length of each simulation time step was one minute and was equal to
the planning interval. The MINLP was solved using Gurobi with a MIP focus of 1, an acceptable
gap of 1e-4, and a solving time limit of 15 seconds to ensure the solution can be implemented
in each time step. The computer was running Windows 10 and was equipped with an Intel(R)
Core(TM) i7-13700 CPU @ 2.10 GHz and useable RAM of 31.7 GB. Figure 1 shows optimised
route plans from the consecutive steps of 8:04 am and 8:05 am. These demonstrate re-routing
as the optimal route of the green vehicle changes in response to dynamic regional speeds.
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(a) Optimally planned routes at 8:04 am

Depot Pick-up ID

24

Drop-off ID
08:05

Vehicle

0

10

20

30

40

50

Sp
ee

d 
[k

m
/h

]

(b) Optimally planned routes at 8:05 am
Figure 1 – Optimal DAR routes with 5 vehicles and 60 total requests

As a preliminary investigation of model scalability five scenarios were tested with three levels
of fleet size and total requests. Figure 2a shows the unweighted values of objective function
components at 10 am for each scenario. Table 1 gives the mean and 99th percentile (P99)
percentage error and solving time in each step for the same scenarios. The Pareto frontier in
Figure 2b was constructed by changing the objective function weight in increments of 0.1.

Table 1 – Mean and 99th percentile solving times and solution errors per step in each scenario
Scenario size [vehicles, requests]

20, 60 20, 120 20, 180 10, 180 5, 180
Mean (P99) error [%] 15.2 (281.2) 46.7 (460.0) 202.6 (2514.3) 72.7 (878.8) 50.2 (323.4)
Mean (P99) time [s] 1.2 (15.5) 3.7 (15.6) 5.1 (15.7) 7.8 (15.5) 14.2 (15.6)
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(b) Pareto dominant solutions (20, 60)
Figure 2 – Objective function values across different scenarios and function weightings

4 DISCUSSION
Initial results presented in this abstract show that the given DAR model is capable of real time
solutions considering dynamic travel times with pre-existing onboard and scheduled requests.
This means that it is a suitable base model for integrating the BEV service fleet. The contribu-
tion of the full conference paper is to consider a BEV service fleet where waiting time at each
charging facility will be determined by a stochastic queuing model. This model will thus con-
sider both dynamic travel times from the regional dynamic traffic model and dynamic charging
times through the stochastic queuing model. In addition the objective function considers the
conflicting priorities of the DAR operator and customers. The full paper will include a sensitivity
analysis of the monetary values of the objective function to further refine the Pareto front.
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