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1 INTRODUCTION

In recent decades, the ridership of urban buses in many cities has seen a significant decline due to low
levels of service and competition from emerging travel modes. To upgrade mass transit systems, it is
necessary to improve operational flexibility to cater to time-varying travel demand. With the rapid de-
velopment of communication technologies, real-time information interchange is becoming increasingly
efficient, introducing opportunities to enhance the service quality of travel systems through the provision
of demand-responsive services. Most existing literature on demand-responsive transits (DRT) focuses on
door-to-door services such as dial-a-ride and ride-sharing, which are suitable for low-demand scenarios
due to their extreme flexibility. For high-demand scenarios such as commuting trips or travel corridors,
the mobility-on-demand bus service, which combines the characteristics of fixed routes and stops from
traditional buses with ride-matching from DRT, can be a promising solution (Errico et al., 2021). With
passengers’ travel demand precisely collected via mobile applications, mobility-on-demand buses can
operate flexibly to satisfy travel demands to the greatest extent. To our best knowledge, dynamic ride-
matching and flexible dispatching methods for mobility-on-demand bus networks are yet to be studied.

This study focuses on real-time dispatching of a flexible mobility-on-demand bus (FMDB) system, where
multi-type buses operate along fixed bus lines and stops. Flexible dispatching strategies, such as stop-
skipping, speed adjustment, and bus holding, can be implemented to enhance service quality by assigning
collected requests to specific bus trips. In our previous work (Wu et al., 2022), passengers who book
trips in advance are responded in batches and bus dispatching schemes are optimized in a rolling horizon
framework. This study aims to further address real-time requests by investigating dynamic dispatching
methods and extending the operational scenario to a network level. As depicted in Figure 1, FMDB buses
adhere to the operation scheme planned for prebooked requests. Matching multiple real-time requests to
bus trips of different bus lines is vital for fully utilizing bus capacities, especially in overlapping bus lines.
To capture the complex spatial correlations among bus lines, stops, and requests, the FMDB network is
modeled as a heterogeneous graph. A Deep-Q-Network (DQN) algorithm integrated with attention-
based Graph Neural Networks (GNN) is employed for real-time decision-making. Numerical studies
validate the performance of the proposed dispatching algorithm compared to a well-known on-demand
ride-sharing (ODRS) system proposed by Alonso-Mora et al. (2017).
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Figure 1 – Illustration of the real-time dispatching problem in an FMDB network.

2 METHODOLOGY

2.1 Network Modeling

In the FMDB network, any pair of bus stops might be served by more than one bus line, known as the
common line problem. Passengers’ boarding behavior among common lines significantly impacts each
other, as it affects the availability of seats at subsequent bus stops. To better model transit networks
with common lines, route section-based methods are commonly adopted (Tian et al., 2021). A route
section is defined as a set of bus lines that connects any two bus stops, thereby dividing travelers at a
bus stop into different groups based on their destination. The FMDB network can then be modeled as a
heterogeneous graph, as illustrated in Figure 2. Each bus stop is divided into several supply nodes, with
each node representing a bus line serving that stop. Supply nodes are interconnected by inner-stop edges
and inner-line edges according to the network topology. Travel demands are captured by route section
nodes, designated as demand nodes and request nodes for prebooked and real-time requests, respectively.
Route section nodes are connected to feasible bus lines at their origin bus stops through boarding edges.
For example, for a real-time request at node D5, it can choose either bus line L2 or L3 at stop S2 to reach
S4, referred to as active nodes N2,2 and N2,3. Since onboard passengers affect the available seat number
along their itinerary, route section nodes are also connected to supply nodes through passing edges.
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Figure 2 – Graph for the FMDB network.
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2.2 Markov Decision Process Design

The dynamic FMDB dispatching algorithm assigns a real-time request p to either an existing or a new
bus trip once the request is proposed at time tp. Denote L as the set of bus lines, S as the set of bus stops,
R as the set of route sections, and P as the set of real-time requests, the problem can be modeled as a
Markov Decision Process (MDP) as follows.

State. Denote Ls as the subset of bus lines serving bus stop s, and ∥Ls∥ as the cardinality of subset Ls.
Based on the planned operation scheme and real-time bus locations, the arrival time t̃s,l

p and available
seat number c̃s,l

p of the next arriving bus for each supply node at time tp can be obtained. The supply
state Sveh

p comprises the state tuple of each supply node, as shown in Equation (1). Real-time request and
prebooked demand distributions are also important references for decision-making. In Equation (2), µr

p
represents the one-hot encoding of the route section of request p. Denote τp as the time slot of tp, qr

τp

represents the number of prebooked requests of each route section in τp.
Sveh

p =
[(

t̃s,l
p , c̃s,l

p
)]

Σs∈S∥Ls∥
, ∀p ∈ P (1)

Sdemd
p =

[(
µ

r
p,q

r
τp

)]
∥R∥

, ∀p ∈ P (2)

Action. For consistency of the action space, the agent determines which supply node should the requests
be assigned to, and then, buses are dispatched accordingly. Define the coming bus as a bus with available
seats and is expected to arrive within a threshold χarr. Requests will board the coming buses at their
assigned supply node Ns,l as soon as possible. If there are no coming buses at Ns,l , a new bus trip will
be dispatched immediately from the depot of bus line l. In this way, the action Ap can represented by
the one-hot variable as,l

p for each supply node in Equation (3). Specifically, as,l
p = 1 if request p is as-

signed to bus line l at stop s; = 0, otherwise. A mask is applied to restrict action selection to active nodes.

Ap =
[
as,l

p
]

Σs∈S∥Ls∥
, ∀p ∈ P (3)

Reward. The objective of dynamic FMDB dispatching is to minimize the total waiting time of all real-
time requests while minimizing increment of supply and delay. Therefore, the reward for request p is
designed as Equation (4), where t̄s

l is the travel time from the depot of bus line l to stop s, and ψ l
new

is the penalty for dispatching new bus trips of bus line l. The term β s
skipψs

stop further penalizes the re-
ward if stop s is skipped in the planned operation scheme, considering the impact on onboard passengers.

Rp =

−
∑

s∈S
∑

l∈Ls
as,l

p

(
t̃s,l
p − tp +β s

skipψs
stop

)
, i f t̃s,l

p − tp < χarr

−
∑

s∈S
∑

l∈Ls
as,l

p

(
t̄s
l +ψ l

new +β s
skipψs

stop

)
, otherwise

, ∀p ∈ P (4)

2.3 GNN-DQN based Dispatching Algorithm

Learning through interactions with the environment, reinforcement learning methods excel in solving
sequential decision-making problems by discovering optimal action policies to maximize cumulative re-
wards. Due to the inherent advantages of GNNs in utilizing topological information, combining GNNs
with other deep learning techniques in the transportation field has proven to be highly effective (Zhou
et al., 2022). In this study, a DQN algorithm is employed to solve the MDP for FMDB dynamically.
Attention-based GNNs are embedded for feature extraction and value function approximation. To en-
hance the robustness of the model across various demand scenarios and bus operation schemes, a sim-
ulator is designed to generate massive samples of ride-matching and operation schemes for prebooked
requests efficiently. During the training stage, the GNN-DQN agent selects a feasible action Ap for each
real-time request based on the state

(
Sveh

p ,Sdemd
p

)
according to the ε-greedy strategy. Then, the envi-

ronment executes the action, evaluates the reward Rp, and returns the next state upon the arrival of the

next request, i.e.,
(

Sveh
p+1,S

demd
p+1

)
. The training process follows the standard framework of the DQN algo-

rithm, incorporating the experience reply technique and a target Q-network. Detailed introduction of the
sampling and network training methods will be provided in the full paper due to page limits.
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3 RESULTS

Preliminary tests of the proposed algorithm are conducted on a network consisting of 3 severely overlap-
ping bus lines with 7 bus stops and 17 route sections. Each episode comprises 1,800 real-time requests
over a 6-hour period. As the training progresses, the average waiting time (AWT) decreases, while the
total number of requests (TNR) served by existing bus trips increases, as shown in Figure 3a. The bench-
mark algorithm is designed as a combination of a batch optimization model for utilizing existing bus
trips and ODRS (Alonso-Mora et al., 2017) for dispatching new bus trips, referred to as ODRS for sim-
plicity. As shown in Figure 3b, the total passenger kilometers (PK_total) of new bus trips dispatched by
FMDB reduces by 29.4% compared to ODRS. Moreover, the wasted passenger kilometers (PK_waste)
decreases more significantly than PK_total, indicating a higher utilization rate of vehicle capacities. The
AWT for requests served by new bus trips (AWT_new) exhibits a remarkable decrease of 87.1%, con-
tributing significantly to the reduction of 30.5% in the AWT for all requests (AWT_all). Since ODRS is
a batch-matching method while FMDB makes decisions in response to each request, it’s reasonable to
observe an increase in the AWT for requests served by existing bus trips (AWT_ext).

(a) Training Curves (b) Comparison of Indicators

Figure 3 – Results of numerical studies.

4 CONCLUSION

This study proposes a learning-based dynamic dispatching model for the FMDB system, which assigns
real-time requests to either existing bus trips or new bus trips. The spatial correlation among the service
network and requests is captured by an attention-based GNN, which is embedded in a DQN algorithm
as value networks. Preliminary results have demonstrated the advantages of the proposed FMDB system
over a ride-sharing service in leveraging the capacity of the vehicles. More details about the dispatching
model, training methods, and numerical results will be elaborated in the full paper.
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