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1 INTRODUCTION

Background and challenges: Predicting how many accidents will occur in the future is of
critical importance for traffic management centres for planning and timed interventions to save
human lives. Several attempts have been made to predict the likelihood of crashes (Xu et al.,
2013), the severity of the incident Mihaita et al. (2019) or its duration Grigorev et al. (2024).
Many of past studies have utilised restricted data sets (mainly traffic logs) due to difficulty in
accessing multiple complementary data sources. Often, various features to be used for traffic
accident prediction are of spatial versus temporal nature and difficult to model together. Some
studies have used deep learning approaches to address the complex nature of traffic accident
causation, including GSNets by Wang et al. (2021) and HeteroConvLSTM by Yuan et al. (2018)
which have used a combination of road network information, environmental characteristics, his-
torical collision records, and traffic states. However, as the spatio-temporal resolution of the data
sets increases, zero-inflated issues can occur; often the human component (such as victim data)
is not considered either, which makes the problem of traffic accident prediction very challenging.

Objective: This paper proposes a new spatial-temporal framework to predict the number of
accidents in an urban area, by integrating multiple heterogeneous data sets such as road struc-
ture, intersection density, weather, historical collisions, traffic information and victim and party
demographics data. Firstly we collect all data sets for the area of Los Angeles which is our
case study. Secondly, we propose a deep learning framework and efficient pipeline based on
a three-dimensional convolutional autoencoder (3DCAE) that determines the optimal size and
sequential combinations of input for predicting the risk level of potential accidents in a subarea
at a given point in time. The framework is further improved based on victim and demographic
party data, which indicates that the age of 23 is common among victims (mostly younf between
18-35 years old). Thirdly, we show that our proposed architecture outperforms other baseline
models such as SDAE (stacked denoising autoencoder), MLP (Multilayer Perceptron) and Con-
vLSTM (convolutional long short-term memory network) in terms of root mean square error and
symmetrical mean absolute percentage error.

2 CASE STUDY

The main area selected for this study is Los Angeles (district 7 of California), as shown in Fig. 1a)
for which the following data sets have been collected:
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Figure 1 – Incident records across Los Angeles Map, b) Grid Heatmap based on number of acci-
dents per cell, c) area grid split into cells at time i.

1. Traffic Accident Data [temporal data; 93 features]: was collected from the State-wide
Integrated Traffic Records System (SWITRS) under the California Highway Patrol division; it
ranges from 2014 to 2019 and contains several features such as time, location, collision type,
severity, reason for collision and the road condition.

2. Weather Data-temporal data [5 features] was collected from the National Weather
Service through the Synoptic Data web service on a daily basis which contain features of pre-
cipitation, wind speed, wind direction, air temperature and visibility. Four key weather stations
have been selected at the following locations; Van Nuys Airport, Santa Monica, Pasadena and
Long Beach.

3. Traffic Speed and Flow Data [temporal data, 5 features] have been collected from
the Caltrans Performance Measurement System (PeMS) Data Clearinghouse under the California
Department of Transportation. It also contains metadata on the vehicle detector station locations
with each detector being placed across the freeway network of the state of California.

4. Road Structure Data-spatial data has been collected from LA GeoHub and this
data set represents the spatial component of our modelling, including features such as: street
centreline (25 features), intersections (12 features), and freeway exit locations (31 features).

5. Victim and Party Data [temporal data, 13 features] is a rare to find data set which
was also collected from SWITRS and complements the traffic accident data by common case ID.
It contains information on individual victims of the collision cases such as age, role and degree
of injury, as well as the total number of parties in a collision case, number of injured, fatality
rate and movement preceding a collision.

Data Preparation: The data sets have underwent an extensive process of cleaning and
formatting including anomaly detection, outlier and duplicate removal, etc. In order to aggregate
features into given subsections of the Los Angeles study area, it was necessary to first represent
the study area as a grid of i rows x j columns of cells which were bounded by latitude and
longitude (see Fig. 1c), with each cell being set to a 1km x 1km size. The 1kmx1km size was
selected after we conducted a sensitivity analysis and comparing sparsity levels on different cell
sizes ranging from 200mx200m up to 2kmx2km(to be included in full paper upon acceptance);
this resulted in the area being fragmented in i=72 rows and j=58 columns. Due to the nature of
traffic accident risk prediction being unbalanced and creating the zero-inflated issue, a dynamic
masking of only non-zero accident risk cells for both predicted and ground truth were used to
alleviate the artificial reduction of calculated error. We provide a heatmap example in Fig. 1b)
when using the 1kmx1km grid split and colouring by the number of accidents per grid at time t.
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3 METHODOLOGY
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Figure 2 – 4D tensor representation of model input and output across time

Feature generation: Given the data set preparation and the grid representation, the problem
definition that we want to solve is to be able to predict the total number of accidents that will
occur at a specific location in the city, after a number of days into the future, by leveraging all
historical information in space and time; this is modelled as an image regression task, with a first
step being the feature preparation. A grid (split into 1kmx1km cells) is then characterised by a
set of features fk, k ∈ {1...N} at a specific moment in time t ∈ {1...2191} (as we have 2191 days
in our data set). Fig. 2 shows an example of a stacked features per grid which we call a 3D tensor
representation of the total number of incidents per grid at a time t0 (Grid(t0){f1, f2, ...fN}). The
time component is split from the current time t0 in a past horizon (t − 1, t − 2..., t − p) and a
future horizon (t + 1, t + 2, ...t + f), where p is the size of the training horizon that will be fed
into the model architecture (how many days from the past) and f the future horizon at which
we are interested to predict (how many days into the future). The entire feature data set is then
split in a 60%− 20%− 20% for training, validation and testing.
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Figure 3 – High-level overview of the 3DimCAE architecture.

Model architecture and implementation: Using the above set-up we propose a new
framework using a three dimensional convolutional autoencoder (3DimCAE) which was trained
using all spatial-temporal features. Fig. 3 represents the model architecture consisting of a
series of three dimensional convolution and max pooling layers, a three dimensional transpose
convolution, and a series of upsampling and three dimensional convolution layers to restore to
the required output size. With regard to model training, all models used a batch size of 16
and the Adam optimiser was used with a learning rate of 0.001 over 15 epochs. We further
performed hyper-parameter tuning, optimisation and regularisation during model training to
improve prediction performance. The performance has been evaluated by using the root mean
squared error (RMSE) and symmetric mean absolute percentage error (sMAPE) against three
other baseline competitive models such as: a) a stacked denoising autoencoder (SDAE) as per
(Chen et al., 2016), b) a Multilayer Perceptron with RelU activation function (MLP) as per
Popescu et al. (2009) and c) a convolutional long short-term memory network, as per Shi et al.
(2015).
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4 RESULTS
Table 1 – Accident risk prediction performance comparison.

Victim/Party Demographic Data Yes No
Model RMSE MAPE RMSE MAPE
MLP 0.04953 12.48% 0.05090 12.62%
SDAE 0.03128 12.46% 0.03149 12.61%
ConvLSTM 0.00136 12.49% 0.00137 12.64%
3DimCAE 0.00018 12.46% 0.00028 12.62%

Victim and part demographics data indicated that from all victims 61.4% were pedestrians;
majority of them were aged between 18-35 with an average age of 23 at the time of the accident.
Such a data set represents a strong statement in how regular road users are extremely vulnerable
to accidents, therefore our experimental set-up included tests with and without this data set to
outlien its importance.

Table 1 presents the prediction results of the proposed framework using 3DimCAE agains all
baseline models, evaluated against RMSE and MAPE on a setup of p=14 days in the past and
f=3 days into the future (the best scenario set-up in terms of performance). Our results are two
fold: a) we show that the 3DImCAE framework outperforms the other models in terms of both
RMSE (0.00018 against 0.04953 for MLP) and SMAPE (12.46% against 12.49% for ConvLSTM)
and b) using the victim data improve the performance of all models. Observation: Although
the dynamic masking we have previously deployed in data preparation mitigates the impact
of the zero-inflated issue, resulting in artificially lowered error rates, the disparities in RMSE
and sMAPE scores between models with and without demographic data are minimal. This
phenomenon is primarily attributable to the sparse occurrence of daily traffic accidents, which
leads to small prediction numbers and contributes to the zero-inflated issue to a lesser extent.

Future directions: Leveraging demographic information aids in identifying high-risk areas
and provides additional context for risk prediction, extending current methodologies to address
the irregular and sparse nature of traffic accidents. The methodology demonstrated herein,
tailored to the Los Angeles study area, offers potential applicability to larger geographic regions,
augmenting traditional spatial-temporal and historical accident data for more generalized risk
prediction beyond specific locales.
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