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1 INTRODUCTION

A central, timely, and controversial question in ride-hailing systems is about the work status
classification of drivers in the platform. Are drivers independent agents, or should they be
classified as employees? The answer is non-trivial, as driving for a ride-hailing platfom entails
significantly more freedom compared to atraditional job, for example, drivers have the flexibility
of selecting when to work (Ramezani et al., 2022). However, the price of each trip, the assigment
of drivers to trip requests, and the drivers’ subsequent earnings are defined by the company.

From a policy perspective, this debate has been on the agenda of many countries and states,
and different measures have been taken (Fielbaum et al., 2023). On the one hand, the original
situation in which the drivers are regarded as independent contractors has had several negative
consequences in terms of working conditions, including the wage level and transparency (Fiel-
baum & Tirachini, 2021, Fielbaum et al., 2023, Ashkrof et al., 2020). On the other hand, a strict
regulation might worsen the situation: for example in Spain, after a new law was introduced,
some delivery companies left the country, while others required drivers to bargain against each
other, which in total seems to be leading to reduced earnings1.

In this context, a novel alternative for the ride-hailing industry, that we term Idle Wage, was
proposed in Chile when discussing a bill aim to address drivers’ earning concerns. The basic
idea behind Idle Wage is to provide a fixed payment to drivers while they are logged
into the driver app but not transporting any passenger. This idea was borrowed from
the general labour legislation, where it deals with situations in which workers are available but
not performing any task because, among other causes, the employer has not assigned them one.
In the case of ride-hailing, there is another argument to consider that being idle is working: The

1See https://www.wired.com/story/spain-gig-economy-deliveroo/, accessed on 18/04/2024
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platform benefits when more drivers are connected, as the users’ waiting times are reduced if
more idle drivers are available (Castillo et al., 2022). In this paper, we formalise the idea of Idle
Wage, and propose a stylised model to capture and quantify its effects.

2 METHODS

2.1 Single-period scenario

Ours is a macroscopic model, where we assume steady conditions and find the economic equilib-
rium between supply and demand. We extend the well-known model by (Castillo et al., 2022)
to include the Idle wage. Let us first introduce the relevant notation in Table 1.

Table 1 – Basic notation of the model

Symbol Meaning Range
p Price per trip charged to the users [0,∞)
Q Trips served per time unit [0,∞]
t In-vehicle time to serve a user Constant
T Waiting time (0,∞]
L Supply size [0,∞)
τ Percentage of the fare kept by the company [0, 1]
I Number of idle drivers [0,∞)
D Demand function [0,∞)
ℓ Supply function [0,∞)
J Idle wage [0,∞)

Here we assume the platform maximises its profit. In the full version of the paper we include
welfare as another possible objective function. The problem solved by the company is:

max
x=(p,J,τ,I,L,Q)

τpQ− JL

s.t


Q = D(p, T (I)),

L = I + (t+ T (I))Q,

L = ℓ( (1−τ)pQ
L , J),

τ ∈ [0, 1], p, J, I, L,Q ≥ 0

(1)

The objective function is just the profit of the company, i.e., what it obtains for every trip served
minus what it spends due to the idle wage. Note that we assume the idle wage is being paid
at a constant rate for all the connected drivers2. The first constraint represents the equilibrium
on the demand, i.e., the number of served trips equates the passengers willing to travel at the
corresponding price p and quality of service measured through the waiting time T ; note that T
is a (decreasing) function of the number of idle drivers I. The second constraint implies that
every driver is either idle, serving a passenger, or on its way to pick up a passenger. The third
constraint represents equilibrium on the supply; the function ℓ is discussed in more detail below.

If J is fixed to be equal to 0, then Problem (1) is exactly the same formulation by Castillo et al.
(2022), where the function ℓ has only the first argument. In our case, J reduces the objective
function through the term −JL, and also changes the number of available drivers. Now the
function ℓ receives two arguments. The first one is the expected income due to the trips (equal

2In this paper, we assume that drivers comply with the trips proposed by the platform. Otherwise, a strategic
behaviour could arise, where riders connect while doing a different job just to earn the Idle wage. Strategic
behaviour in general is regarded as a relevant direction for future research.
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to the total income received by the drivers, divided by the number of drivers), which we denote
e = (1−τ)pQ

L . The second one is the income through J . Our main assumption is that drivers are
risk-averse. The income via e has a random component, namely, how many of those trips will
be assigned to me? On the other hand, the income through J is predictable. We represent this
situation through the following mathematical assumption: For every e, J ≥ 0, we have

∂ℓ

∂e
(e, J) ≤ ∂ℓ

∂J
(e, J) (2)

With mild assumptions on the differentiability and asymptotic behaviour of the functions involved
(described in the full version of the paper), our main results in the single-period case are:

Theorem 1: For any p, J, τ , there exist I, L,Q such that the equilibrium conditions of Problem
(1) are fulfilled.

Theorem 2: Problem (1) admits at least one solution with τ = 1.

Theorem 3: Assume ℓ(e, J) = Aρ(e, J), where A is the maximum number of drivers and ρ a
function taking values in [0, 1]. For a given A and τ , denote by J∗(A, τ) the resulting optimal J
when solving Problem (1) with exogenous τ . Then J∗(A, τ)

A→∞−−−−→ 0.

The proofs are in the full version of this manuscript. Three comments are noteworthy:

1. The “true” decision variables of the company are p, J, τ , as the rest is exogenous. Theorem
1 ensures that whatever combination the company decides, an equilibrium exists.

2. The reason why it is optimal to provide τ = 1 is risk-aversion. The core of the proof is
that, if τ < 1, it is possible to increase τ and compensate via increasing J .

3. Theorem 3 is a negative result. Assuming τ < 1 makes sense when the problem becomes
multi-period (see next section). This theorem provides insights on why platforms might
be reluctant to introduce the idle wage, particularly when there is a large population of
potential drivers (a situation that helps them strive, de Ruijter et al. (2024)); namely,
because they could attract too many of them.

2.2 Multi-period model

The demand for transport presents strong fluctuations along the day. This is why ride-hailing
companies have introduced surge pricing, so that pricing can be a tool to match demand and
supply (Yan et al., 2020). In the context of J , having it dynamic might contradict its ultimate
purpose of providing the drivers with a more predictable income. In the multi-period model,
we consider that the day is divided in T periods of the same length, and the demand function
D(p, T ) is different in each of them. We assume the platform can change the price p in each of
these periods. Regarding J we study three policies in terms of how much can it change, and now
summarise our main findings in each of them:

• Fully flexible J : If J can be defined per period, the multi-period model is equivalent to
having T independent single-period models. Thus, all previous theorems remain valid.

• Single J : The extreme opposite of the previous policy is that a single J has to be decided
for the whole day. In this case, τ = 1 is not always optimal. That is, in this context it
is convenient for the company to pay the drivers using both mechanisms. This illustrates
a fundamental trade-off: Idle wage has the virtue of being better received by the
drivers, but it is less adjustable to face the flexibility of the demand.
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• Double-interval minimum wage constraints: A reasonable condition is that if a person
drives during a normal working day (e.g., 8 hours), they should receive a guaranteed income
through J . Which 8 hours should they work? We propose a model to capture that those
8 hours should permit a reasonable time to perform other activities, through following
constraint: ∃I1, I2 continuous and disjoint intervals, both of length 4 hours, such that∑

h∈I1 Jh+
∑

h∈I2 Jh ≥ M , where M is an exogenous value, e.g., the daily minimum wage.
Note that this condition is always feasible thanks to Theorem 1. However, the profit could
diminish because of attracting more drivers that will receive J3. Quantifying this reduction
is a complex combinatorial problem, and we develop a specific heuristic to solve it.

3 NUMERICAL RESULTS

We use specific functional forms and parameters taken from Yan et al. (2020), and assume
that every dollar earned via J is valued as 1, whereas if earned via trips is valued as β, with
β = 0.25, 0.5, 0.75, 1. Some of the main results are illustrated in Figure 1.

Figure 1 – Numerical results. In the left, we show the optimal profit achieved for given values of
J , marking when the resulting optimal τ is 1. Note that when drivers are risk avert (β < 1), the
optimal solution always requires τ = 1. In the right, using β = 0.5, we show the profit decrease
due to the minimum wage constraint, for different values of the threshold M .
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3If drivers are risk-neutral (i.e. ∂ℓ
∂e

= ∂ℓ
∂J

) the profit will remain unchanged if the threshold is lower than what
drivers earn in the optimal solution of the unconstrained problem.
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