
Inland Waterway Freight Demand Forecasting with
Spatio-temporal Dynamic Graph Attention-based Multi

Attention Model
Lingyu Zhanga, Oliver Schachta, Qing Liua∗

a Hamburg university, Hamburg, Germany
lingyu.zhang@uni-hamburg.de
oliver.schacht@uni-hamburg.de

qing.liu@uni-hamburg.de
∗ Corresponding author

Extended abstract submitted for presentation at the Conference in Emerging Technologies in
Transportation Systems (TRC-30)

September 02-03, 2024, Crete, Greece

April 12, 2024

Keywords: Inland waterway transportation; Demand forecasting; GAT; Spatiotemporal (ST)
features; Dynamic graph

1 INTRODUCTION

As a sustainable transportation mode, inland waterway transport (IWT) has gained more and
more attention in recent years. In alignment with the European Union’s sustainable and smart
mobility strategy, transport via inland waterways and short sea shipping is expected to increase
by about 25% by 2030 and 50% by 2050, relative to the 2015 levels. However, the volume of cargo
transported through Germany’s inland waterways has declined. Due to significant investments
in port facilities and their developmental delays, accurate and reliable demand information is
essential for politicians to adjust policies and port manager to plan and manage vacant resources.

Compared to other transportation modes, IWT is easier to be influenced by external factors
due to the unique geographical situation. For example, IWT is vulnerable to water levels and
extreme weather events Christodoulou et al. (2020). Hence, it will be not enough to do the
forecasting solely based on historical demand, which make it even more changeling to get the
accurate demand forecasting due to the complicated spatial and temporal relationships.

Recent advancements in machine learning technologies present opportunities to surpass the
traditional assumptions inherent in ARIMA models and incorporate covariate data into predictive
analyses. In response, our project has leveraged state-of-the-art machine learning models to
address existing forecasting challenges. Consequently, port managers can obtain more precise
demand forecasts, allowing for timely strategic adjustments. Furthermore, policymakers can
employ these methods to evaluate the impact of their initiatives, such as subsidy policies, and
ascertain their efficacy in shifting cargo transport to IWT.

2 Methodology

2.1 Data Description

Our dataset contains monthly records of IWT cargo demand from January 2000 to November
2022 in Germany. It includes different types of cargos, like general and container cargos, and
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gives detailed information about the origin and destination of freight, as well as the freight type.

2.2 Model details

In contrast to traditional static graph representations, our research applies dynamic graph anal-
ysis to capture the changing conditions of various ports over time. This approach allows for
the integration of temporal changes and inter-port dynamics, which are crucial for a compre-
hensive understanding of the inland waterway transport system. In detail, our model considers
various inter-port relationships, including geographical distance and previously established trade
connections. Moreover, our model integrates node features at each port into the volume flow
analysis, accounting for variables such as water levels and conditions that can significantly impede
transport, including floods, weed infestations, and ice formation. These features are meticulously
aggregated from a network of water measurement stations, allowing us to compile comprehensive
feature matrices for each port at each temporal snapshot.

Figure 1 – GAT-DAMN model

In addition to these node features, we identify hinterland connections—particularly those
stemming from rail terminals—as pivotal in influencing demand dynamics within the inland
waterway network. The type of cargo also plays a decisive role in shaping flow patterns; thus, it
is included as a critical component of the node feature matrices. By incorporating these diverse
yet interconnected factors, our approach provides a multidimensional perspective on the demand
fluctuations in inland waterway transport. After gathering both dynamic and static adjacency
matrices along with node features, we applied GAT model Veličković et al. (2018) to generate new
feature matrices. These matrices serve as the aggregated spatial features for subsequent analysis.
In our model’s treatment of temporal features, we consider not only the typical annual trends and
seasonality but also the impacts of significant external events that have the potential to disrupt
established patterns. This includes the global disruption caused by the COVID-19 pandemic
as well as the effects of changes in subsidy policy that directly influence transport logistics.
The generated spatial and temporal features are then fused to be the inputs of the encoder-
decoder framework. Inspired by the work by Zheng et al. (2020), we have adapted to enhance
the model’s focus on these two critical factors, spatial and temporal factors, distinguishing our
approach from traditional transformer models. This allows our approach to accommodate the
fluctuating conditions that are characteristic of this mode of transport, enhancing the accuracy
and relevance of our forecasting.

TRC-30 Original abstract submittal



Lingyu Zhang, Oliver Schacht, Qing Liu 3

3 Results

3.1 Result comparison

To assess the necessity of advanced modeling techniques, this research employs multiple forecast-
ing methods for IWT demand. These methods range from statistical techniques such as Histori-
cal Averages (HA) and Autoregressive Integrated Moving Average (ARIMA), to shallow machine
learning models like Random Forest (RF) and Multilayer Perceptrons (MLP), and include deep
learning strategies such as Long Short-Term Memory (LSTM) networks and Transformers. We
forecast demand for 1, 3, 6, 12, and 24 periods ahead, using MAE (Mean Absolute Error) and
RMSE (Root Mean Square Error) as metrics for our study. The comparative performance re-
sults are detailed in Table 1. The results indicate that our model outperforms the comparative
forecasting models in terms of accuracy.

Table 1 – Model Performances Comparison

Model Month General Cargo Container Cargo

RMSE MAE RMSE MAE

HA 66.48 29.30 30.16 17.14

ARIMA

1 64.43 35.32 53.36 29.94
3 62.79 34.45 53.20 29.90
6 62.36 34.16 53.40 30.20
12 62.63 34.03 53.61 30.41
24 66.63 34.64 53.63 30.54

MLP

1 52.73 25.86 23.99 16.01
3 62.83 27.04 24.53 16.55
6 55.17 25.71 26.67 18.13
12 55.59 25.66 25.55 16.63
24 57.03 25.85 28.70 18.26

RF

1 63.03 27.56 28.52 17.32
3 67.35 28.49 28.52 17.11
6 61.15 27.71 29.15 17.02
12 65.73 28.06 29.34 17.15
24 63.19 27.71 30.35 17.26

LSTM

1 59.65 26.61 24.72 15.54
3 58.28 26.57 24.75 15.76
6 58.83 26.78 24.39 15.41
12 60.99 28.97 24.79 15.61
24 57.63 26.50 25.71 15.87

Transformer

1 58.61 28.24 22.38 14.55
3 57.83 28.49 23.06 14.67
6 57.24 28.46 23.16 14.67
12 59.60 28.36 24.32 15.11
24 59.81 28.05 25.11 15.24

GAT-DMAN

1 41.06 17.82 19.74 11.35
3 41.19 18.38 16.68 10.62
6 43.53 18.47 20.35 12.24
12 44.12 19.91 21.35 13.24
24 44.40 21.04 21.49 12.94
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3.2 Model Performance

To demonstrate the efficacy of our model across ports of varying sizes, we present Figure 2, which
illustrates the comparative performance

To demonstrate the efficacy of our model across ports of varying sizes, we refer to Figure
2 which illustrates the varying performance across small, medium, and large ports. This figure
reveals that our model excels in predicting for medium and large ports, while small ports pose
measurement challenges common to all models.

Figure 2 – IWT transport quantities change

4 Discussion

In conclusion, our findings provide practical insights for inland waterway port managers to ad-
dress resource management challenges precipitated by volatile demand flows. Our approach offers
a data-driven foundation for enhancing predictive accuracy, thereby enabling more informed and
timely investment decisions. Furthermore, the increased precision of our forecasting models of-
fers policymakers a reliable metric by which they can evaluate and adjust their strategies, such
as revising subsidy policies, to better promote the adoption of greener transportation mode.

Due to data limitations, this work does not cover all possible factors, including various policies
related to inland shipping and infrastructure information. Future research aims to include more
variables to enhance the model’s accuracy once the data become available. Additionally, the
applicability of this model could be tested in other research fields.
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