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1 INTRODUCTION
The rapid economic growth and technological advancement have increased reliance on cars,
evident in the significant rise in car ownership around the world. However, despite the critical
role of vehicles in modern life, parking-related challenges persist, leading to negative externalities
such as time, fuel consumption and environmental impact (INRIX, 2017). Emerging solutions
such as Smart Parking Systems (SPS) offer advanced technologies to improve parking efficiency,
providing services like real-time parking availability information, online reservation, and mobile
payment (Rizvi et al., 2019). The efficiency of SPS has been proved in reducing fuel consumption,
driving costs and parking search time, thereby potentially alleviating traffic congestion and
emissions (Berenger Vianna et al., 2004).

However, current parking solutions often have limited search capabilities, typically offering park-
ing spaces with direct walking access to destinations, thereby restricting parking options in close
proximity to intended destinations (Postma, 2022). Secondly, existing parking allocation al-
gorithms lack the flexibility to accommodate personalised parking preferences for individuals.
Instead, they assume uniform preferences among drivers, which may not align with real-world
practices where individual parking preferences vary significantly (Nakazato et al., 2022). To
address these challenges, this study proposes a personalised end-to-end parking allocation al-
gorithm. Firstly, the algorithm uses a Multi-Agent Reinforcement Learning (MARL) paradigm
to simulate the end-to-end parking process with multiple traffic modes involved, which enables
drivers to explore parking options beyond the constraints of walking access to their destinations.
Secondly, Grey Relational Analysis (GRA) is applied to personalise parking profiles for indi-
viduals, especially under the assumption that the relative importance of selected preferences is
unknown (Deng, 1982). Lastly, a comprehensive analysis is conducted to evaluate the effective-
ness of GAR in personalisation compared to the Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) algorithm within the MARL paradigm.
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2 METHODOLOGY

2.1 Reinforcement Learning Approach
A MARL environment is usually characterised by Markov Games (MGs), also known as stochastic
games. A MG is generally defined by a tuple (N,S,Ai(s), P,Ri, γ|i ∈ N, s ∈ S, a ∈ Ai(s)) where
N = 1, 2, . . . , n denotes the number of agents; S is the state space observed from the environment.
It includes number of agents nt on the network at time t and the occupied number ojt of parking

zones j and the confidence level cjt of securing an available parking space where cjt =
1−(nj

t )
Nj ×100

and N j is the capacity of the parking zone j. Ai(s) is the action space of the i-th agent and
A := A1×A2× · · ·×An is the joint action space for all agents. In this paper, Ai(s) is defined as
Ai(s) = [a1, a2, . . . , aj , aw, apt], where aj is the action for driving to car park j, aw denotes the
walking action and apt is the action for taking public transport. If agents are driving from the
origin to the car park, Ai(s) = [a1, a2, . . . , aj ]; otherwise, Ai(s) = [aw, apt]. P : S ×A → δ(S)
is the transition probability to the next state s

′ ∈ S given a current state s ∈ S and a joint
state a ∈ A; Ri : S × A × S → R is the reward function representing the instantaneous reward
received by the i-th agent when transitioning from a state-action pair (s, a) to s

′ , denoted by
Ri

t :
∑T−1

k=t γk−1rik+1. γ ∈ [0, 1] is the discount factor.

In a Multi-Objective MARL problem, rewards are represented as vectors rather than scalar val-
ues: R(s, a) = [R1(s, a), R2(s, a), . . . , Ri(s, a), . . . , Rn(s, a)]. Each Ri(s, a) component represents
a multi-objective reward for agent i: Ri(s, a) =

∑
k=1w

i
kf

i
k(x), where f i

k(x) denotes the reward
calculated for different parking preferences, weighted by wi

k to determine relative importance.
The rewards are transformed into monetary values within a linear programming model. Specifi-
cally, time reward is the difference between observed and free-flow travel times, multiplied by the
Value of Time. Cost reward includes ticket fees, hourly parking pricing, and estimated parking
time. Fuel consumption reward is determined by the fuel price multiplied by total consumption
while carbon footprint reward is the total carbon emission multiplied by the value of carbon.
To evaluate the learning performance of different models under MARL, Deep Q-Network (DQN)
and Advantage Actor Critic (A2C) algorithms are employed in Section 3.

2.2 Parking Preference Personalisation
This paper employs GRA to personalise and determine the relative importance of parking pref-
erences, assuming only the chosen parking preference is known a priori. GRA, initially proposed
by Deng (1982), deals with real-world situations only containing partial information, also known
as grey systems. In a grey system, decision-making becomes challenging when multi-attributes
are considered. To represent this problem using the GRA framework, the parking preferences of
agent i can be denoted by relative factor sequences, as expressed below:

Xi
q = (xiq(1), x

i
q(2), . . . , x

i
q(p), . . . , x

i
q(n)) (1)

where q = 0, 1, 2, . . . ,m represents the number of preferences or objectives with q = 0 denoting
the total distance, p = 1, 2, . . . , n represents the number of parking zones and the element xiq(p)
represents the value computed for the parking zone p under the q-th preference.

The grey relational coefficient γ(xi0(p), x
i
p(q)) of Xi

q and Xi
0 at point p can be defined as (Deng,

1982):

γ(xi0(p), x
i
q(p)) =

min
q

min
p

∣∣xi0(p)− xiq(p)
∣∣+ ξmax

q
max

p

∣∣xi0(p)− xiq(p)
∣∣∣∣xi0(p)− xiq(p)

∣∣+ ξmax
q

max
p

∣∣xi0(p)− xiq(p)
∣∣

γ(Xi
0, X

i
q) =

1

n

n∑
p=1

γ(xi0(p), x
i
q(p))

(2)
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where ξ is the distinguishing coefficient, typically set to 0.5 and γ(Xi
0, X

i
q) is the grey relational

degree that can be normalised to serve as the weights in the reward function.

3 RESULTS

3.1 Experiment Setting
The study focuses on the Meadows district of Nottingham, England, known for its diverse mixed-
use spaces. In the study area, a total of 562 parking spaces are distributed across 7 parking zones,
including both on-street and off-street areas. To effectively manage computational intensity, the
total number of parking spaces was scaled down to 70 parking spaces for 20 agents involved in the
environment. The traffic flow data was extracted from smart cameras provided by the Vivacity
Lab while the parking data was analysed based on the transactions of parking metres sourced
from RingGo. Both traffic flow data and parking data for this study area were pre-processed and
integrated into the simulation environment using Simulation of Urban MObility (SUMO). Two
analyses are conducted: one comparing the learning performance of DQN and A2C algorithms,
and another comparing GRA with TOPSIS for personalising parking preferences. Five distinct
scenarios, based on the number of chosen preferences, are defined for comparison. Scenario 1
evenly distributes agents selecting one to four preferences, while Scenarios 2, 3 and 4 feature
agents predominantly choosing one, two, three, or four preferences, respectively. In addition,
three metrics are defined to evaluate the practical performance of the proposed algorithms,
including average total travel time, average total travel distance, and average walking distance.

3.2 Findings
To analyse the convergence of learning algorithms, the median results of the last 100 episodes
are summarised in Table 1. The total reward is not simply the summation of all individual
rewards, as the weights assigned to each preference for each agent vary. In this table, the
trend of individual rewards does not exhibit a consistent increase or decrease across scenarios,
reflecting the complexity of the scenario configurations based on the dominance of preference
numbers and the origin-destination pairs of each agent. However, it can be concluded that A2C-
GRA demonstrates superiority over DQN-GRA in the aspects of total reward, as evidenced by
the increased rewards of A2C-GRA. On average, the total reward of A2C-GRA is increased by
12.58% relative to that of DQN-GRA. Therefore, in the comparison of preference personalisation
algorithms, GRA and TOPSIS were trained using the A2C paradigm for optimal results.

In addition, the A2C-GRA algorithm demonstrates significant differences in learning performance
compared to the A2C-TOPSIS algorithm, with an average improvement of 27.24% in total re-
wards. Furthermore, the individual rewards for preferences of the A2C-TOPSIS algorithm also
fail to surpass those of the A2C-GRA algorithm, except for some rewards for carbon footprint.
Figure 1 summarises the metrics evaluation of the DQN-GRA, A2C-GRA, and A2C-TOPSIS
algorithms. The superiority of the A2C-GRA algorithm is observed in minimising travel time
and travel distance compared with DQN-GRA, and A2C-TOPSIS. Conversely, A2C-TOPSIS
outperforms others in minimising walking distance across all scenarios, except in scenarios dom-
inated by three preferences. Although the A2C-GRA algorithm does not minimise the walking
distance to the same content as other algorithms, it can be inferred that the driving distance it
generates is smaller, indicating reduced fuel consumption and carbon footprint.

4 DISCUSSION
The analysis compared the performance of A2C-GRA and DQN-GRA, finding A2C-GRA to be
notably more efficient, achieving a total reward 12.58% higher on average and demonstrating
improvements in travel time, travel distance, and walking distance by up to 14.05% in certain
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Table 1 – Learning Performance of DQN-GRA, A2C-GRA, and A2C-TOPSIS

Scenarios Algorithms Reward Time Cost Fuel Carbon
Scenario 1 DQN-GRA -1.200 -10.146 -2.177 -0.433 -0.282
(Even Distribution) A2C-GRA -1.047 -8.302 -2.251 -0.422 -0.172

A2C-TOPSIS -1.364 -7.488 -2.490 -0.428 -0.180
Scenario 2 DQN-GRA -0.872 -9.173 -3.124 -0.644 -0.284
(1 Preference Dominant) A2C-GRA -0.868 -7.591 -2.325 -0.490 -0.222

A2C-TOPSIS -1.091 -7.751 -2.205 -0.502 -0.141
Scenario 3 DQN-GRA -1.338 -8.497 -2.039 -0.527 -0.188
(2 Preferences Dominant) A2C-GRA -1.143 -8.432 -1.758 -0.432 -0.171

A2C-TOPSIS -1.420 -11.405 -2.608 -0.685 -0.214
Scenario 4 DQN-GRA -1.218 -10.189 -2.225 -0.675 -0.269
(3 Preferences Dominant) A2C-GRA -1.195 -8.462 -1.935 -0.434 -0.161

A2C-TOPSIS -1.894 -8.480 -2.260 -0.344 -0.126
Scenario 5 DQN-GRA -1.766 -8.931 -1.543 -0.637 -0.233
(4 Preferences Dominant) A2C-GRA -1.179 -8.951 -1.891 -0.423 -0.133

A2C-TOPSIS -1.845 -10.604 -2.346 -0.582 -0.254

(a) Travel Time (min) (b) Travel Distance (km) (c) Walking Distance (km)

Figure 1 – Metrics Evaluation for DQN-GRA, A2C-GRA, and A2C-TOPSIS

scenarios. Although both GRA and TOPSIS algorithms were trained using A2C, A2C-GRA
consistently outperformed A2C-TOPSIS across all scenarios, with a notable 27.24% increase on
average. The evaluation of metrics showed that A2C-GRA excels in minimising travel time
and travel distance compared with A2C-TOPSIS, while A2C-TOPSIS outperforms A2C-GRA in
walking distance. The study suggests potential future research involving real-world preference
data to further assess GRA and TOPSIS effectiveness and expand the applicability and accuracy
by considering additional preferences.
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