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1 INTRODUCTION

In response to the challenges posed by the rapidly evolving urban environment, there is an
emerging need to supplement traditional Origin-Destination Matrices Estimation (ODME) mod-
els with data sources that can offer broader and more insightful perspectives (Cantelmo et al.,
2014). While traditional fixed-location data collection tools have been foundational in establish-
ing reliable traffic metrics, they often do not fully encompass the multifaceted nature of travel
demand (Carrese et al., 2017). Crowd-sourced data – which includes mobile phone data, GPS-
based data, and social media analytics – offer promising avenues for gathering high-resolution
information that reflects the actual travel patterns of urban travelers. In particular, the integra-
tion of location-based crowd-sourced data (Timokhin et al., 2020) into ODME models can offer
significant insights into the activities users engage in at destination or the purpose of their trips.

In an earlier work (Castiglione et al., 2024), the authors investigated the motivations behind
people’s trips, estimating how travel flexibility varies in relation to the nature of the activity
carried out at destination, leveraging crowd-sourced data such as Floating Car Data (FCD)
and Google Popular Times (GPT). The findings have shown how flexibility parameters vary
among different types of activities and over time, and have allowed detailed estimations of spatio-
temporal flexibility for different components of travel demand (e.g. rigid or flexible demand
components). In particular, four demand components C have been identified, each associated
with a specific degree of temporal and spatial flexibility, represented by a set of sample OD
matrices. These matrices are obtained from the aggregation of FCD trips, categorized based on
comparable values of spatio-temporal flexibility. The evidence from earlier research highlights
the necessity of integrating the insights obtained from crowd-sourced data into the framework
of traditional dynamic ODME models, such as the Generalised Least Squares (GLS) model
(Cascetta et al., 1993).

This paper introduces the Flex-GLS approach, a novel extension of the GLS model that is
designed to account for multiple demand components characterised by spatio-temporal flexibility
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metrics derived from real-world, crowd-sourced data. This model aims to offer a more accurate
representation of travel demand by integrating both temporal and spatial flexibility dimensions
to better reflect the complex dynamics of urban travel. The paper is organized as follows: the
Methodology section describes the Flex-GLS model, detailing its theoretical foundations based
on the concepts of Temporal and Spatial Flexibility. The Results section evaluates the model’s
effectiveness compared to the standard GLS model, while the Conclusions outline key takeaways
and future research venues.

2 METHODOLOGY

Given nt,C sample OD matrices, where each cell represents trips from an origin O to a destination
D within a time interval t for a travel demand component C, derived from the aggregation of
crowd-sourced data based on shared spatio-temporal flexibility, as detailed in Castiglione et al.
(2024). Temporal Flexibility (TF) and Spatial Flexibility (SF) define an individual’s ability to
adjust the timing and locations of their activities, respectively. In this context, the traditional
GLS model is extended to encompass multiple demand components C, each characterized by
its unique spatio-temporal flexibility distribution σC . The modified GLS objective function is
provided as follows:

d∗ = argmin
d

(∑
t

(∑
l

wl · (vl(d)− v̂l)
2 +

∑
od

∑
C

wC · (dod,C − d̂od,C)
2

))
(1)

Here, vl(d) denotes simulated traffic flows from a certain demand matrix d, against observed
traffic counts v̂l. d∗ represents the estimated matrix that minimises the discrepancy between
simulated and observed flows. Any generic demand matrix d can then be segmented into C
components where dod,C indicates the demand for each OD pair per component, while d̂od,C is
the seed matrix for each demand component obtained from the classified FCD in Castiglione
et al. (2024). The weights wl and wC are assigned based on the inverse of traffic counts and
demand component variances, respectively. Incorporating multiple demand components, while
straightforward conceptually, significantly complicates the estimation process, especially for large
urban networks. The Flex-GLS model, however, addresses this complexity by using conditional
probabilities to treat demand components as one composite OD variable, ensuring computational
efficiency. Demand components are thus defined as:{

dC,t,od = pC(t)× dt,od

pC(t) =
dC,t∑
t dC,t

(2)

Where pC(t) is obtained from the classified FCD sample OD matrices. The Flex-GLS model
then utilizes a gradient descent algorithm to estimate the demand for each OD pair and time
interval t. After each gradient descent step, the Flex-GLS refines the individual demand compo-
nents through a constrained Maximum Likelihood Estimation (MLE) problem, leveraging prior
probabilities PC(t) and variances σ2

C based on seed FCD data.

The MLE constraints in the model aim to ensure data consistency, with Temporal and Spatial
Flexibility treated as complementary. Temporal constraints allow adjustments in demand com-
ponent proportions within a time interval t, while ensuring overall consistency across a temporal
window T . This is critical for accurately capturing variations in travel behavior, considering
narrower time windows for commuters versus broader windows for other, more flexible activ-
ities (e.g. shopping). Similarly, Spatial Flexibility enables the redistribution of demand from
one origin O to various destinations within the same time interval, maintaining, however, the
proportionality in demand components. The spatio-temporal MLE problem constraints are thus
formalized as:
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{∑
C PC(t) = 1 ∀t ∈ T, ∀od∑
t∈T

∑
d dC,t,od∑

t∈T

∑
d dt,od

≈
∑

t∈T

∑
d dC,t,od∑

t∈T

∑
d dt,od

∀C,∀t ∈ T, ∀d
(3)

The constraints can be visualized as a matrix segmented into blocks across OD and t di-
mensions (Figure 1). Temporal and spatial flexibility constraints influence these blocks’ size
and overlap, with rigid components depicted as smaller, closely overlapping blocks, and flexible
components as larger, spanning multiple intervals, reflecting the varying levels of flexibility in
the constraints.

Figure 1 – Representation of the constraints blocks within a demand component matrix

3 RESULTS

For benchmarking purposes, a systematic comparison is conducted to assess the performance of
the Flex-GLS model against the conventional GLS model across various scenarios. The under-
lying hypothesis posits that Flex-GLS, as a generalization of GLS, can offer improved accuracy
in OD estimation, particularly when the demand components’ proportions obtained through
crowd-sourced data align closely with the real network conditions. The benchmarking method-
ology assesses the impact of Temporal Flexibility, Spatial Flexibility, and their joint effect on
estimation accuracy. Each scenario provides insights into the models’ performance and adapt-
ability, using a "real" demand as a baseline for comparison. Although not directly observable,
the "real" demand represents the actual demand generating the traffic counts on the network
and offers a solid foundation for evaluating estimation accuracy. These scenarios are evaluated
on both a toy network, with one origin and two destinations, and a more complex real-world
network. The latter is based on the EUR district of Rome, Italy, which includes 54 traffic zones
(2916 OD variables), over four 15-minute time intervals. The toy networks were designed to
numerically demonstrate the conditions under which the proposed model is outperforming the
traditional GLS, when the two models are the same, and when the GLS is to be preferred. Re-
sults on the toy network are presented to illustrate the model’s capabilities in a simplified context
before applying it to the more complex real-world scenario. The investigated scenarios are as
follow:

• Scenario 1: High congruence between seed and real demand matrices, including
component ratios. This scenario assumes a close match between the seed and real
demand (RMSEseed = 5.98), introducing minor perturbations: up to ±3% for the rigid
component and ±10% for the flexible component to reflect their respective stability and
variability. It demonstrates the Flex-GLS model’s enhanced ability to replicate traffic
flows and estimate demand components (RMSEF-GLS = 3.31) more accurately than the
traditional GLS model (RMSEGLS = 4.12), highlighting its superiority in conditions of
high data reliability.

• Scenario 2: Divergence of total seed demand from real demand with simi-
lar component proportions. This scenario tests the Flex-GLS model under conditions
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where the overall seed demand significantly diverges from the real demand, yet the com-
ponents structure remains consistent. After perturbing the real demand components with
random noise (±3% for rigid, ±10% for flexible components), the total seed demand is
inflated by 30% while preserving component ratio integrity (RMSEseed = 29.96). The
Flex-GLS model shows robustness in reconciling substantial discrepancies between seed
and real demands (RMSEF-GLS = 4.31), outperforming GLS (RMSEGLS = 11.97) in es-
timation accuracy. It also achieves improved RMSE for detected versus simulated flows
and proves its effectiveness in component-wise demand estimation despite significant seed
demand variances.

• Scenario 3: High congruence between seed and real demand matrices but sig-
nificant component ratio differences. This scenario evaluates the Flex-GLS model
performance with reliable total seed demand (RMSEseed = 1.75), but inaccurate compo-
nent distributions. This reveals the model limitations, indicated by high RMSE values
in demand estimations (RMSEF-GLS = 12.12), signaling considerable inaccuracies. As an
extreme test case, it highlights the importance of reliable data on individual demand com-
ponents for Flex-GLS effectiveness. For unreliable component structure data, a hybrid
GLS and Flex-GLS approach may yield better outcomes in less extreme conditions.

4 Conclusions

The paper introduces the Flex-GLS model, a significant advancement to the traditional GLS
framework for ODME, by incorporating crowd-sourced data insights. The benchmarking analysis
of Flex-GLS across three scenarios reveals the model’s adaptability and potential limitations. In
Scenario 1, when both the seed demand and the demand component ratios are congruent with
the real demand, Flex-GLS demonstrates high estimation accuracy. Scenario 2 highlights the
model’s robustness in adjusting demand estimations amidst significant seed demand fluctuations,
however, Scenario 3 points out the model’s dependence on reliable demand component data,
with estimation reliability decreasing with component proportions misalignment. This outcome
cautions against the Flex-GLS’s use in the absence of reliable data on the structure of the
individual demand components. However, it is important to note that the insights obtainable
from crowd-sourced data align with these requirements. Initial tests on a simplified network
underscore the Flex-GLS’s potential, yet its full utility is expected in real-world applications
using comprehensive data. The application of the model to the EUR district of Rome, Italy, is
actually ongoing.Flexibility parameters for this application will be derived from crowd-sourced
data collected between September and December 2020 in the EUR district.
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