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1 INTRODUCTION

Macroscopic modeling of the dynamics of epidemics transport is of significant importance as
such dynamic models can be used for prediction of epidemics spreading in different areas, while
keeping a relatively lower computational burden as compared with detailed models accounting
for individual-to-individual interactions. For this reason, there are coupled models that describe
epidemics spreading over different geographical regions, such as, for example, [1], [2], [3]. Al-
though such models are useful for describing the epidemics transport effect at higher levels, e.g.,
at a city or prefecture levels, they may not describe epidemics transport at the level of a specific
closed space, e.g., a metro corridor or a conference venue. For this reason in [4] and [5] cou-
pled crowd flow - epidemics spreading dynamics models are presented, which describe epidemics
transport via accounting for the effect of people movements in certain spaces.

In the present abstract we employ the model we present in [6], which employs a different crowd
flow model component than [5], as well as it accounts explicitly for ventilation rate dynamics. In
particular, we present a model consisting of three parts, a crowd flow dynamics component, an
epidemics spreading model, and an equation that provides the velocity field due to ventilation.
Using the numerical scheme we present in [6] we perform different tests than in [6]. Specifically,
we present here preliminary and simpler-to-implement tests, in comparison with [6], in which
the crowd is moving towards an exit that is assumed to be the whole right boundary of the
computational domain (instead of, e.g., only a specific part of it, which would be more practically
realistic). Detailed explanations and results are included in [6].

2 COUPLED CROWD FLOW - EPIDEMICS SPREADINGMODEL

2.1 Crowd Flow Model

By denoting as x = (x, y) ∈ Ω the spatial variables and t > 0 the time, we define as ρ(x, y, t) the
pedestrian density, while as u(x, t) and v(x, t) we denote the x−component and y−component
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of the velocity vector v, respectively. The model equations can be written as

ρt +∇ · (ρv) = 0, (1)

(ρv)t +∇ · (ρv ⊗ v + P (ρ)) =
1

τ
ρ (V (ρ)~µ− v) , (2)

where P (ρ) = ρC2
0 is an internal pressure function, with C2

0 being constant representing an
anticipation factor, µ is the desired direction vector, and τ is relaxation time. For the speed-
density relation we implement the following relation

V (ρ) = umaxe
−α(ρ/ρmax)2 , (3)

where α > 0 is a constant, umax is the free-flow velocity, and V (ρmax) ≈ 0 with ρmax being the
congestion density at which the motion is hardly possible. With regard to the desired direction
of motion ~µ, we obtain ~µ by solving an eikonal equation as in, e.g., [7].

2.2 Epidemics Spreading Model

The model utilized here is from [5] and is based on a macroscopic version of a SEIS model
where each type of pedestrian (SEI) moves with the crowd speed v. The density of each type of
pedestrian satisfies then the following

ρSt +∇ · (ρSv) = κρI − βIρS , (4)
ρEt +∇ · (ρEv) = βIρ

S − θρE , (5)
ρIt +∇ · (ρIv) = θρE − κρI , (6)

where ρS , ρE , and ρI are densities of the susceptible, exposed, and infected pedestrians, respec-
tively, satisfying ρ = ρS + ρE + ρI . Further, βI is the infection rate, κ is the recovery rate and θ
is the rate with which exposed persons are becoming infected. However, on the time scales under
consideration, κ and θ are very small and set to zero in our numerical simulations. We compute
βI = i0β(x, t), where β(x, t) is the solution of the following drift-reaction-diffusion PDE in 2D
following [5] as

βt +∇ · (βUG) = ∇ · (σ∇β)− νβ +
ρI

ρ
, (7)

and UG is a given velocity field of the surrounding air-flow in the computational region. Variable
σ is effective turbulent viscosity for the aerosol and the term −νβ models the fact that aerosol
particles are settling due to the gravitational force, while the parameter i0 is determined by
the infectivity [5]. To produce a steady velocity field UG we employ the solution of a Laplace
equation in 2D.

2.3 Numerical Implementation of the Model

The details of the numerical implementation scheme are omitted due to space limitation and
since they are repeated in [6]. We briefly discuss here this implementation. The crowd flow
model is numerically solved employing a finite-volume scheme, using the Roe Riemann solver,
see, for example, [8]. For the direction vector we solve the respective (eikonal) Hamilton-Jacobi-
type equation using the Fast-Sweeping Method, see, e.g., [9]. The epidemics transport equations
are solved using a finite-volume scheme with Rusanov flux, see, e.g., [8]; while the equations for
aerosol dynamics and ventilation rate are solved using finite-difference schemes, see, e.g., [8].
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3 SIMULATION RESULTS

We consider a walking facility of size [0, 50m] × [0, 20m] with an exit being, for simplicity as a
preliminary result, the whole right boundary. The initial density is ρ0 = 1ped/m2 in the region
[0, 20m] × [0, 20m] with v0 = 0. We perform simulations with the velocity field UG shown in
Figure 1 with inflow velocity uin = 10m/s.
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Figure 1 – Ventilation velocity field considered.

Figure 2 illustrates epidemics transport at two different time instances t = 10s and t = 20s.
We observe that the number of exposed individuals increases as the crowd is moving towards the
exit, also depending on the dynamics of the infection rate β.

Figure 2 – Total density, infection rate coefficient, and density of exposed individuals at two
different time instants, namely, t = 10s (left) and t = 20s (right).
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4 CONCLUSIONS AND CURRENT WORK

We presented numerical tests implementing an epidemics transport model that involves a crowd
flow dynamics and an epidemics spreading dynamics component. We studied the behavior of
epidemics transport under movements of pedestrians in a closed area, in the presence of venti-
lation. We are currently further validating the model in various numerical scenarios, as well as
we investigate potential design of real-time control strategies for the ventilation rate to reduce
spreading, which may account for the dynamics of speed and density in time and space.
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