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1 INTRODUCTION

The increasing prevalence of vehicles equipped with onboard sensors, ranging from conventional
vehicles with advanced sensor capabilities to autonomous vehicles (AVs), offers significant po-
tential for traffic state estimation (Li et al. (2020)). AVs provide substantial data from their
surroundings Chen et al. (2022), but their network penetration rate is expected to remain low
in the near future. This paper introduces a lane-based queue length estimation method for city
streets based on AV data, as existing works in the literature often overlooked multi-lane streets
Ramezani & Geroliminis (2015), Guo et al. (2019).

In this study, AV data refers to the information autonomous vehicles collect as they move
through the network. This includes detailed data about the AV’s own status at each time step,
as well as information about surrounding vehicles within a specific detection radius. Key data
inputs include vehicles’ position, speed, and ID.

AVs can detect a specific vehicle at multiple locations and offer a continuous and real-time
view of traffic conditions by capturing real-time data of surrounding vehicles. AVs close to inter-
sections, especially those in the queues, can gather data of vehicles entering the intersection from
all lanes. The data can be used to reconstruct missing data in vehicle trajectories. Aggregating
data from multiple AVs across the network provides opportunities to estimate traffic states even
with a low percentage of AVs in the network and enables a comprehensive understanding of
queueing dynamics at intersections.

The proposed approach assumes no explicit information regarding signal timings or vehicle
arrival distributions. To account for the ultra-low penetration rate of AVs, we developed methods
suitable for varying AV penetration rates of 1%, 2%, and 5% in the network. We propose a
method for estimating traffic signal states, reconstructing vehicle trajectories and estimating
queue length within urban networks. Since an existing dataset with a percentage of AVs in the
network is unavailable, we simulated data using AIMSUN software, modelling a network with 16
intersections (4 actuated and 12 fixed-time signal intersections).
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2 METHODOLOGY

The proposed methodology begins with a multi-level system for estimating traffic signal state
data. Initially, we concentrate on data from one lane at a time, focusing on vehicles approaching
an intersection. By identifying AVs on a lane within the visible range of the traffic signal, we
can determine the state of the signal for instances where the AV can observe the traffic light. To
accommodate low AV penetration rates, we incorporate other data sources, as described in the
following paragraphs, to infer traffic states over time.

We use stationary vehicles to discern the red signal state. Let us assume that the speed of
the queue discharge shockwave w is derived as in eq. 1, where gmax is maximum flow, vg is free
flow speed, and Kjany is jam density. We estimate the projected time for each stopped vehicle
relative to the intersection by eq. 2 where ¢}, is projected time at intersection, t; is the current
time of stopped vehicle, and S; and Siy; are the current position of the stopped vehicle and the
position of the intersection, respectively. This process allows us to deduce the traffic signal state
at time (tp).

q
W= gt 1)
Ui jam
‘S - Sint’
tp - ti + ZT (2)

Further, we identify green phases by considering various vehicle characteristics associated
with green signal states. Firstly, vehicles within their safe stopping distance from the intersection
(eq. 3 where dj is safe stopping distance, v; is the current velocity of the vehicle, ¢, is the reaction
time of the driver, and apax is the maximum deceleration of the vehicle) imply a green signal
state by eq. 4, where d; represents the distance of the vehicle to the intersection. In addition,
vehicles recently crossing the intersection and still close to the crossing line indicate additional
green signal states.

v2
ds = vity + ! (3)
Gmax
green if dg < d; (4)
unknown otherwise

Having estimated the majority of traffic signal states over time, the next objective is to
estimate the remaining unknown signal states. For each lane, we identify conflicting movements
at the intersection and estimate their signal states using the same methodology. We infer the
subject lane to be red if any conflicting movements are deemed green. Subsequently, we address
the unknown times of traffic signals by assigning the closest known traffic state in the time series.
Furthermore, we ensure that each green phase lasts for at least 10 seconds and each red phase
for at least 30 seconds, though these durations may vary based on intersection configurations.

The second major step of the method is trajectory reconstruction. We start by locating the
earliest record in time to reconstruct trajectories for each vehicle’s data. If the data represents a
moving vehicle, we project it back to when it entered the lane using free-flow speed. For stopped
vehicles, we check if there is a vehicle behind them with zero speed. If not, we project the stopped
vehicle’s data similarly to the previous case. If a stopped vehicle is behind them, we generate
a stopping data point for that vehicle’s most recent time step. We continue this process until
there are no stopped vehicles behind the vehicle.

Next, we generate data for missed time steps by sorting vehicles based on projected entry
time. We maintain data continuity by interpolating between existing records or extrapolating
based on the last known velocity and acceleration, ensuring that generated speeds do not exceed
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the maximum permissible speed. We also consider signal states and safe distance to the front
vehicle, preventing vehicles from crossing a red signal or having rear-end collisions.

After reconstructing all trajectories, we proceed to estimate queue length. In the queue
estimation step, we determine join and leave points for vehicles. Join points signify where
vehicles stop, while leave points denote where they start moving again. Partitioning data into
cycles, we align trajectories with the intersection position and the end of the red phase, allowing
us to regress the head of the queue line. By regression using the start of red and join points, we
derive the back of the queue line, from which we identify the queue clearance point. Iteratively
refining this estimation, we establish a function representing the back of the queue. The difference
between the head and back of queue functions yields the queue length. Finally, we apply the
queue length estimation procedure to ground truth data, determining the queue length as a
function of time.

3 Results

Each signalized intersection featured four directions and 12 lanes. We exported vehicle data from
the simulation, including position, speed, acceleration, and ID. We then designated a percentage
of vehicles as autonomous and filtered their data along with data from vehicles within their 30-
meter detection radius at each timestep. The estimation accuracy of traffic signal settings varies
depending on the penetration rate of autonomous vehicles (AVs) in the network and the type of
traffic signal system (see Table 1).

Table 1 — Accuracy of Estimated Signals

AV Penetration Rate (%) Actuated Signals Fixed-Time Signals

5 75% 90%
2 62% 78%
1 50% 65%

Once we have estimated the signal settings, we reconstruct trajectories (see figure la). We
refer to the existing data in our dataset as observed data. The reconstruction process involves
multiple levels for each vehicle’s data. In step 1, we address data points where vehicles are
stopped (i.e., zero speed). If there is a stopped front vehicle, we generate additional stopped
data for the next time step. Similarly, if a vehicle was stopped in a previous time step, we
generate another stopped data point for that timestep. In step 2, we handle vehicles with gaps
in their data by interpolating the missing data between the boundary data points. Step 3 involves
locating the earliest record in terms of time and reconstructing the vehicle’s trajectory back to
when it entered the lane using free-flow speed. In step 4, we consider the last data for each
vehicle. If the vehicle has not crossed the crossline on that point, we generate data for the next
step based on the velocity, acceleration, and traffic signal state.

After reconstructing the data, we estimate the queue size. An example of the comparison
between the ground truth queue size and the estimated queue size is illustrated in figure 1b. To
measure the accuracy of the queue length estimation, we use the mean absolute error (MAE)
with the unit of vehicles. Table 2 shows the MAE across all cycles.
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Figure 1 — The sample for one cycle with 5% AV in the network (a) observed data and recon-
structed data, (b) ground truth and estimated queue size with MAE=0.34 (veh).

Table 2 — Mean Absolute Error (MAE) of Queue Length Estimation

AV Penetration rate (%) Actuated signals Fixed-time signals

) 1.25 0.67
2 1.48 0.83
1 2.15 1.27

4 Discussion

This study presents a novel method that leverages AV data to estimate lane-based queue lengths
and traffic signal states. This approach is particularly notable for working effectively with ultra-
low penetration rates of AVs, offering a solution for managing urban traffic in a data-sparse
environment.

First, the method’s ability to estimate traffic signal settings demonstrated a high level of
accuracy, 90% for fixed-time signals and 75% for actuated-time signals. Second, the trajectory
reconstruction method leverages estimated signals and available data, even when sparse, for queue
length estimation over time. The queue size mean absolute error (MAE) values of 0.67 for fixed-
time signals and 1.25 for actuated-time signals at intersections suggest that our approach yields
reasonably accurate queue length estimates. This result confirms that despite the challenges of
working with sparse data and limited information on signal timings, our approach shows promise
for accurate traffic state estimation in urban networks.
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