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1     INTRODUCTION 
 
On-demand meal delivery has become a prevalent feature of last-mile delivery in urban landscapes, 
spurred by digital platforms and temporary restaurant closures during the pandemic (Liu and Li, 
2023). As the demand for online food delivery experiences continuous growth, the ghost kitchen 
model has emerged as a pivotal innovation for the on-demand delivery logistics domain (Statista, 
2024). These kitchens, designed to optimise food delivery by eliminating front-end real estate and 
focusing entirely on the preparation and outbound logistics of cooked meals, significantly reduce 
operational costs and are integral in addressing challenges linked with road networks, congestion, 
risky behaviour, and excessive GHG emissions when planning poor (Lord et al., 2023, Gregory, 
2021, Christie and Ward, 2019). This study extends the utility of a Markov model, developed to 
represent courier pickup and delivery (Bell et al, 2024), to optimise ghost kitchen location.  
 

2     Methodology 
 

2.1  Markov Models 

Core of a Markov model is a transition matrix describing probabilistically the transition of the system 
from state to state, or in our case, the transition of couriers from one location (kitchen or customer) 
to the next. The transition probability is a function of the travel time from the current location to the 
next plus the dwell time at the next location and a parameter representing the intrinsic attraction of 
the next location. The functional form of the transition probability emerges from the entropy 
maximising derivation of the Markov model. The Markov model has been calibrated to the Grubhub 
dataset, which is publically available 
(https://github.com/Grubhub/mdrplib/tree/master/public_instances/0o100t100s1p100). 

2.2  Problem Definition 

We model kitchens and customers as nodes within a fully connected network, with kitchens (𝑆𝑆) 
and customers (𝐶𝐶) forming the complete node set (𝑉𝑉 = 𝑆𝑆 ∪ 𝐶𝐶). Node coordinates allow us to 
calculate straight-line distances and, assuming constant courier speeds, to derive travel times 
between nodes. Due to Grubhub data limitations, we do not use actual road or cycle path travel 
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times but do include fixed dwell times at each node to represent time spent at either pickup or 
delivery points, integrating these into the node-to-node travel time matrix �𝑐𝑐𝑖𝑖𝑖𝑖�. Couriers circulate 
based on a Markov process, with node-to-node transition probabilities determined by 𝑐𝑐𝑖𝑖𝑖𝑖, meal 
delivery urgency (𝛽𝛽) , and destination demand (𝑞𝑞𝑗𝑗 , with 𝑗𝑗 ∈ 𝑉𝑉 ). Sequential destinations are 
restricted to customers after kitchens and potentially other customers or a return to a kitchen after 
deliveries. Paths, represented as node sequences, include all possible routes originating from any 
kitchen (𝑃𝑃𝑖𝑖) or customer �𝑃𝑃𝑗𝑗�, and between any node pair �𝑃𝑃𝑖𝑖𝑖𝑖�.  

Despite theoretically allowing infinite paths, cycles like repetitive customer visits are discouraged 
by the model's structure and extended travel times. The model parameters, 𝑞𝑞𝑗𝑗 and 𝛽𝛽, are calibrated 
by aligning the Markov model's pickup and delivery frequencies plus average delivery times with 
observed data. This calibrated model then enables the examination of policies, such as kitchen 
relocations, on demand and overall mean delivery time. Bell et al (2024) introduced two methods 
for calibrating model parameters. Interested readers are referred to that paper for more details. For 
the purposes of this analysis, we will utilise the parameters calibrated for the Grubhub dataset. 

2.3  Markov Chain 

Couriers are modelled as perpetually circulating. While in reality couriers may enter and exit the 
workforce, these changes are treated as simple replacements that do not alter the overall count of 
couriers. We define for 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉: 

 𝑎𝑎𝑖𝑖𝑖𝑖 = �
0 if 𝑖𝑖 = 𝑗𝑗 or both 𝑖𝑖 ∈ 𝑆𝑆 and 𝑗𝑗 ∈ 𝑆𝑆 

𝑞𝑞𝑗𝑗 exp�−𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖�  otherwise  (1) 

The transition probability (the probability that a courier moves to 𝑗𝑗 ∈ 𝑉𝑉 from 𝑖𝑖 ∈ 𝑉𝑉) is: 

 𝑡𝑡𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑖𝑖

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘∈𝑉𝑉
 (2) 

This Markov chain is irreducible because all nodes “communicate” with each other. Transition 
between kitchens can occur indirectly via customer visits, ensuring all states “communicate” (Ching 
and Ng, 2006). Given that this Markov chain consists of a finite number of states, it is also positive 
recurrent. An irreducible and positive recurrent Markov chain has a unique equilibrium state vector. 
The stability to this equilibrium for the Grubhub dataset is demonstrated in Bell et al (2024). 

Let path 𝑝𝑝′ = 𝑖𝑖 → 𝑘𝑘 → 𝑙𝑙 → ⋯ → 𝑗𝑗  and define 𝜋𝜋𝑝𝑝′ = 𝑞𝑞𝑘𝑘𝑞𝑞𝑙𝑙 …𝑞𝑞𝑗𝑗 . Hence the probability that a 
courier chooses path 𝑝𝑝′ ∈ 𝑃𝑃𝑖𝑖𝑖𝑖 is: 

 
Prob�𝑝𝑝 = 𝑝𝑝′|𝑝𝑝 ∈ 𝑃𝑃𝑖𝑖𝑖𝑖� =

𝑞𝑞𝑘𝑘exp (−𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖)𝑞𝑞𝑙𝑙exp (−𝛽𝛽𝑐𝑐𝑘𝑘𝑘𝑘) …𝑞𝑞𝑗𝑗exp (−𝛽𝛽𝑐𝑐𝑚𝑚𝑚𝑚)
∑ 𝜋𝜋𝑝𝑝exp (−𝛽𝛽𝑐𝑐𝑝𝑝)𝑝𝑝∈𝑃𝑃𝑖𝑖𝑖𝑖

=
𝜋𝜋𝑝𝑝′exp (−𝛽𝛽𝑐𝑐𝑝𝑝′)

∑ 𝜋𝜋𝑝𝑝exp (−𝛽𝛽𝑐𝑐𝑝𝑝)𝑝𝑝∈𝑃𝑃𝑖𝑖𝑖𝑖
 

(3) 

For paths connecting node 𝑖𝑖 ∈ 𝑆𝑆 to node 𝑗𝑗 ∈ 𝐶𝐶 define: 

 𝐿𝐿𝑆𝑆𝑖𝑖𝑖𝑖 = ln (� 𝜋𝜋𝑝𝑝exp (−𝛽𝛽𝑐𝑐𝑝𝑝))
𝑝𝑝∈𝑃𝑃𝑖𝑖𝑖𝑖

, 𝑖𝑖 ∈ 𝑆𝑆, 𝑗𝑗 ∈ 𝐶𝐶 (4) 
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The mean delivery time from a kitchen at location 𝑖𝑖 ∈ 𝑆𝑆 to a customer at location 𝑗𝑗 ∈ 𝐶𝐶 is: 

 𝜇𝜇𝑖𝑖𝑖𝑖 =
∑ 𝑐𝑐𝑝𝑝𝜋𝜋𝑝𝑝 exp�−𝛽𝛽𝑐𝑐𝑝𝑝�𝑝𝑝𝑝𝑝𝑃𝑃𝑖𝑖𝑖𝑖

∑ 𝜋𝜋𝑝𝑝 exp�−𝛽𝛽𝑐𝑐𝑝𝑝�𝑝𝑝𝑝𝑝𝑃𝑃𝑖𝑖𝑖𝑖
= −

𝜕𝜕𝜕𝜕𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

 (5) 

By employing finite differencing techniques, we can approximate  
𝜕𝜕𝜕𝜕𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

 with high accuracy. After 
calibrating the model through the methodology outlined in Bell et al (2024), we showcase its 
capability to evaluate the impact on travel time of relocating a kitchen.  By taking the existing 
Markov model parameters and recalculating the travel time matrix for the kitchen's new location, 
we recalculate the mean delivery time to all customers.  

According to (1), as the distance between kitchen 𝑖𝑖  and customer 𝑘𝑘  decreases, the transition 
probability between these locations increases, suggesting that the optimal location of kitchen 𝑖𝑖 is at 
a location where it is closest to all customers to minimise mean delivery time. This principle suggests 
that relocating kitchen 𝑖𝑖 to the geometric median would be a reasonable approximation for the 
location with the minimum delivery time yielded by the Markov model. To identify the geometric 
median, we employ the Weiszfeld algorithm (Weiszfeld, 2009), known for its simplicity and 
effectiveness. Starting with an initial guess, the algorithm updates the median's position by 
computing a weighted average of the points, where the weights are inversely proportional to their 
distances from the median. If the median coincides with any given point, it is directly set to avoid 
division by zero. The process repeats until the changes are smaller than a set tolerance, indicating 
convergence. Algorithm 1 demonstrates the steps of this algorithm in detail.  

 

3     Results and Discussion 

To illustrate the accuracy of the Weiszfeld algorithm for approximating the optimal location 
indicated by the calibrated Markov model, we relocate kitchen 84 from its initial position at 
coordinates (4558, 2716). Figure 1 shows the mean delivery time surface estimated by the Markov 
model using the 𝑞𝑞 values estimated for the Grubhub dataset when 𝛽𝛽 =  3.8. A grid search suggests 
that the optimum location for the Markov model lies near coordinates (8000, 7000). Algorithm 1 
found the geometric median to be at coordinates (8307.4, 7059.1), which is a good approximation. 
The full paper will further explore the use of the Weiszfeld Algorithm, and modifications to it like 
replacing 𝑑𝑑𝑖𝑖𝑖𝑖 by 𝜇𝜇𝑖𝑖𝑖𝑖, for optimally locating ghost kitchens. In this way, we will tailor the Weiszfeld 
Algorithm to more closely correspond to the Markov model. 
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Figure 1 – The mean travel time surface of kitchen 84, employing an exhaustive search 
across the X and Y plane. 
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