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1     INTRODUCTION  

Modeling public transit (PT) operations is a complex task because of various factors such as 
fluctuating demand and supply variations, external disruptions, diverse behaviors, infrastructure 
design, and driver behavior. These factors are interconnected, creating a dynamically uncertain 
system locally with specific data elements and globally across the entire PT network. Extensive 
research that has been conducted in this field with three-fold categories: scalable and efficient 
methods such as macroscopic and mesoscopic simulations (Toledo et al., 2010), detailed but isolated 
analyses like microscopic simulations (Zhang et al., 2008, Johansson et al., 2015), and data-driven 
approaches such as machine learning and deep learning (ML-DL) (Yazdani et al., 2023). 

The first category is effective for modeling the overall traffic and transit system, but often 
oversimplifies local dynamics by assuming deterministic patterns or theoretical distributions, and 
thus may not accurately represent real-world complexities (Fernández, 2010). Dynamic day-to-day 
variations of, for instance, passenger arrival rates, boarding and alighting data, agent interactions, 
adaptive signal delays and priority control, and driver behavior can significantly impact the PT 
operational reliability. At the same time detailed analyses, of the second category, with detailed 
considerations may not fully address how these PT variations impact the reliability of the PT system. 
That is, it is essential to comprehend how passenger-demand fluctuations at one stop can affect these 
fluctuations at other stops, the effect of changed demand on reliability, and the potential impacts of 
bus bunching in one line on other bus lines. Finally, in the third category, data-driven methods show 
a promise in learning historical patterns but may fail to connect different aspects of the PT network 
and analyze their interrelationships. For example, proactive prediction of passenger demand at each 
PT stop could potentially improve reliability measures through optimizing the supply elements.  

This study proposes a novel approach that integrates between microscopic simulation and machine 
learning to provide an AI-powered microscopic holistic model. It is shown that this approach 
enhances computational efficiency and scalability across larger PT networks. In this work’s 
methodology the machine learning and deep learning (ML-DL) is seamlessly integrated with 
simulation of real-time with a unified engine operation.  It is being powered by AI models, trained 
on large-scale historical data from extended period of time, that govern certain simulation activities. 
This integration is not only rationalizing computation by eliminating the need for individual-agent 
simulation of some secondary components such as cars, signals, etc., but also expands the scalability 
of microscopic simulation of some primary elements as PT vehicle and passenger movements and 
their interactions. 
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2     METHODOLOGY APPROACH 

The foundational concept of this work’s framework lies in its innovative approach to modeling 
various components and activities in transit operations. We classify these components into primary 
and secondary activities. Primary components directly involve vehicle and passenger movements, 
including vehicle and passenger interactions, dwell and travel times, waiting and queuing behavior, 
PT stop processes, and route and network geometric design. Microscopic models, such as the 
Wiedemann-99 Car Following, the Social Force, and the Queueing models, are utilized to explicitly 
simulate these processes (Johansson et al., 2015, Durrani et al., 2016). The secondary components 
indirectly impact system reliability, encompassing factors such as demand fluctuations, weather 
conditions, departure discrepancies, traffic congestion, intersection delays, and public transport 
priority controls. These are implicitly modeled using ML-DL algorithms trained on extensive real-
operation datasets. 

The framework is comprised of three core mechanisms or engines: the data processing and fusion 
engine (DPF-E), the AI engine (AI-E), and the simulation engine (SM-E). The DPF-E automates 
data retrieval from various sources, processes, integrates, and reshapes data to fit the input required 
by each AI model. The AI engine hosts multiple specialized ML-DL models that predict and analyze 
various operational conditions before and during real-time simulation. These models predict 
passenger demand at each stop, boarding/alighting variability, departure times from terminal for 
different PT lines, and delays at actuated signalized intersections with priority control procedures. 
The models promptly and accurately make predictions by learning historical patterns including 
spatial and temporal variations, compared with traditional methods relying on theoretical 
distributions or fixed values. 

The simulation engine combines all primary components, including physical network, routes, stops, 
and vehicle and passenger movements and interactions. It receives precise predictions from the AI-
E at specified intervals during the simulation and links these processes together. The integration 
between an AI engine and the simulation enables this accurate representation of historical patterns 
and variabilities, facilitating the implementation of effective control strategies to mitigate reliability 
issues like PT vehicle bunching. 

3     CASE STUDY 

The transit simulator AMATS has been utilized in a case study to assess the operational reliability 
of Melbourne's Tram Route 96 in Australia. The objectives of the case study are threefold. First, to 
showcase how AMATS accurately replicates historical patterns and variabilities, such as day-to-day 
demand fluctuations, dwell time and headway variability in time and space, delay propagation, travel 
time variabilities, and departure discrepancies, as depicted in Figures 1 and 2. Second, to distinguish 
between recurrent and non-recurrent reliability issues like bunching under realistic conditions, which 
include uncertain demand, dispatch irregularities, and external disruptions like weather, signal, and 
traffic delays at intersections. By modeling the day-to-day variability of underlying factors using 
AMATS simulation, it was observed that certain bunching patterns commonly occur at specific 
locations and times on weekdays, as shown in Figure 3. Third, by leveraging the integrated AI-E, 
the sources of reliability problems were accurately identified, as depicted in Figure 4. 

Tram Route 96, being one of the largest and busiest routes in Melbourne, faces challenges such as 
schedule deviations and bunching, further complicated by its role in connecting multiple attractions 
and regions through the CBD. The highly uncertain passenger demand makes it challenging for 
traditional simulators to effectively capture the impact of these fluctuations on transit operation and 
reliability. These simulators often rely on Poisson and Binomial distributions for boarding and 
alighting processes, respectively (Toledo, 2010 #90), which fail to adequately capture the sensitivity 
to external factors such as events and adverse weather conditions which may lead to unanticipated-  
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Figure 1 - Demand fluctuation and load profile (Left: Real observation (AFC), right: 
AMATS Simulation) 

 

 

Figure 2 – Dwell time distribution at different stops (Left: Real observation (AVL), right: 
AMATS simulation) 

 

 

Figure 3 – Headway variability and bunching (Left: AVL data, right: AMATS simulation)  
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Figure 4 – Correlation of vehicle delay and headway variability with demand (AMATS 
simulation) 

-changes in arrival rate, boarding or alighting at certain stops, affecting dwell time and the whole 
service performance. AMATS has the capability to capture such variabilities from input data and 
incorporate them into the microsimulation process where the cascading effects of random factors are 
modelled and their effect on service performance is estimated and evaluated. 

4     DISCUSSION ON APPROACH TESTING 

The results demonstrate that the AMATS simulator effectively represents both underlying factors 
and reliability measures. In Figure 1 the boarding and alighting characteristics and tram’s passenger 
load day-to-day variability are accurately captured. While there is a slight overestimation of demand 
for some stops compared to AFC data because of the introduction of a weight factor to account for 
fare evasion, the overall distribution is accurate. The total estimated daily boarding numbers range 
between 35,000-60,000 with an average of 56,400 compared with the observed value of 56,722 and 
the Victorian Integrated Transport Model of 58,720; thus, it results with an error of less than 1%. 

Measuring dwell time and headway variability is a challenging task. AMATS adeptly captures both 
their spatio-temporal variability and the mean values with over 90% accuracy as shown in Figure 2. 
Furthermore, capturing reliability issues, such as bunching under uncertain conditions with 
fluctuating demand, supply variation, and externalities presents a challenge. By running AMATS 
over several days, we were able to identify and differentiate between systematic recurrent and non-
systematic bunching events. For instance, morning and afternoon peak bunching occurrences were 
frequently observed on different days, while other bunching incidents varied from day to day and 
stop to stop, as is illustrated in Figure 3 for a typical weekday. Finally, the results revealed that an 
increase in demand not only leads to higher vehicle delays at stops but also makes these delays less 
predictable. This aligns with findings from the literature, where an increase of the number of 
alighting passengers prolongs dwell time per passenger and thus results with higher and less 
predictable dwell times (Zhang et al., 2008). AMATS provides a wide range of applications at 
different scales and resolutions, tailored to specific project requirements. 
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