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1 INTRODUCTION

Transport networks support mobility and urbanization, but globalization brings environmental
issues such as carbon emissions and air pollution. Encouraging eco-friendly modes like bicycles
yields economic and social benefits (Yang et al. (2018)). Despite benefits, safety concerns persist,
potentially hindering widespread bicycle adoption (Fishman et al. (2012)). Studies on motorized
vehicles and bicycles sharing routes (Yuan et al. (2019)) reveal that most accidents result from
inadequate separation between lanes (Lindman et al. (2015)). Segregated infrastructure enhances
safety (Lawrence et al. (2018)).

Our approach, leveraging graph theory metrics, comprehensively assesses cycling network
safety during cyclist link upgrades. Unlike conventional indicators confined to road segments
(Mesbah et al. (2012)), we analyze network connectivity based on topology and segment-specific
safety information using graph theory metrics. We apply them to Grenoble’s cycling network
using public data. Our optimization objective is to maximize overall metrics throughout a
gradual safety enhancement process, for which we have developed an algorithm.

2 Cycling Safety Definition and Problem Formulation

2.1 Safety weight assignment

Our analysis is make in city of Grenoble, France. We assume linear weights for the links within
the bicycle network only based on infrastructure characteristics and it will be called degree of
separation (DoS) with the assumption that a higher DoS indicates a safer road. The city
features four types of roads: G4, the most segregated and exclusive for roads with DoS 4; then
G3, G2, and G1 with DoSs 3, 2, and 1 respectively. Here, G1 includes roads that are mixed with
motorized traffic.
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Consider a weighted undirected graph G = (V,E,W ), with G = G1⊎G2⊎G3⊎G4. The operator
⊎ unites node and edge sets, with weights G1,G2,G3, and G4 have distinct edge sets, each without
overlap. The set of nodes is denotes by V , E represents links, and W holds weights, for each
e ∈ E, ωe means the weight of the edge e. Nodes are intersections or endpoints, while links are
the roads, DoSs are weights on links, higher values indicating greater safety and comfort.

2.2 Problem formulation

Beginning with the weighted graph G, our objective is to incrementally elevate the DoS of edges
from k to k+1 for k = 1, 2, or 3. Instantaneous transformation of all roads within a sub-network
is impractical, necessitating a gradual approach. Safety upgrades target links within Gk. We
define η as a graph theory metric assessing overall safety in G (see Section 3). Edges in Gk

are divided into n sets, S1, S2, . . . , Sn, ensuring that the difference in the number of elements
between each set is at most one. Using η(h1+p1, h2+p2, . . . , hn+pn), we represent the sequential
upgrade of proportions (i.e, number of elements) in sets S1, S2, and so on, until Sn. We assume
elements within Sr are sorted, and (hr + pr)|Sr| implies selecting initial elements corresponding
to the proportion hr + pr in Sr, where |Sr| is the cardinality of Sr for all r = 1, 2, . . . , n.

The optimization problem we aim to solve is given by:

max J
hr,pr

= η(h1 + p1, h2 + p2, . . . , hn + pn)− η(0, 0, . . . , 0)

s.t
n∑

1=1

(hr + pr)|Sr| ≤ Budget,

hr ∈ {0, 1} , pr ∈ [0, 1] ∀r = 1, 2, . . . , n,

hr + pr ≤ 1, ∀r = 1, 2, . . . , n,

tr ∈ {0, 1} , tr ≥ pr, ∀r = 1, 2, . . . , n,
n∑

r=1

tr ≤ 1,

We assume that the cost of improving a road is unitary and independent of the current DoS
k. Therefore, the Budget is equal to the number of roads to be upgraded from DoS k to k+1. By
imposing the last four constraints, we guarantee that at most a single proportion value deviates
from 0 or 1. This means that at most once the total or zero elements of a set may not be taken
at all.

3 Metrics

Given v ∈ V , its local strength (Barthélemy et al. (2005)) is defined as s(v) =
∑

e∈Av
we, with

Av ⊂ E the set of adjacent edges to v. The normalized local strength of v in G is defined as
sN (v) = s(v)

sFS(v)
∈ [0, 1] , where sFS is defined as the local strength of node v in a hypothetical

fully-safe network equal to G but where all the edges have the highest DoS. The normalized
global strength sG is then defined as sG = 1

|V |
∑

v∈V sN (v) ∈ [0, 1], where |V | indicates the
cardinality of V . Here sG is one of our η to maximize. A similar definition is doing by the
closeness centrality metric cG , where for v ∈ V , the local closeness centrality (Kansky &
Danscoine (1989)) of v in G is defined as c(v) = |V |−1∑

u∈V lu,v
, where lu,v is the shortest path between

node v and u where the weight also is the lowest possible (for this metric it is necessary to invert
the weight of the links) and finally we define a global metric largest connected component as
follow, let Cω0 be the set of edges with DoS greater or equal to ω0, with ω0 ∈ N ∪ {0} and ω0 ≤
maxω(v1,v2) for all (v1, v2) ∈ E. Let H be the largest connected graph induced by Cω0 , and |VH|
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Figure 1 – In the top row, edges of G1, G2, and G3 are presented, colored by the Si sets from Algorithm LCC
with k = 1, 2, 3 and n = 20 for the 3 cases. In the middle row, gradual improvements of metrics sG, cG, and dG
are plotted against upgraded links in Si for G1, G2, and G3, respectively. The color bar below the x-axis indicates
Si. In the bottom row, the increase in upgrading is plotted using a greedy algorithm.

be the number of nodes of H, HFS is defined as H but considering the fully-safe network instead
of the original G. Then we define: dG =

|VH|+
∑

e∈EH
ωe

|VHFS
|+

∑
e∈EHFS

ωe
=

|VH|+
∑

e∈EH
ωe

|VHFS
|+maxωe

e∈E
|EHFS

| ∈ [0, 1] .

4 Optimization Algorithm and Results

We created the Algorithm LCC to build sets Si basing in maximizing the largest connected
component and sorted them in the inner of the sets according their betweenness centrality (Liu
et al. (2019)). Once that we have these sets, the choice of proportions is as follows for all
r = 1, 2, . . . , n:

hr + pr =


1 if

∑r
q=1 |Sq| ≤ Budget,

α ∈ (0, 1] if
∑r−1

q=1 |Sq|+ α|Sr| = Budget,
0 if

∑r
q=1 |Sq| > Budget.

(1)

With
∑0

q=1 |Sq| := 0. The primary aim of Algorithm LCC is to maximize the size of the largest
connected component with a DoS of k + 1.

In Fig. 1 (g), (h), and (i), we employ a greedy approach where we create sets of the same
size as Si and fill them with edges in an order determined solely by betweenness centrality, with
proportions of the sets as in eq. (1). Nevertheless, when obtaining the proportions for the sets
Si through the use of eq. (1) and Algorithm LCC, consistently exhibit more favorable outcomes,
as depicted in Fig. 1 (d), (e), and (f), in this last scenario, given a hypothetical budget of 250
edges (vertical red line). In the two scenarios, the connected component metrics manifest more
pronounced variations in their values.
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