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1 INTRODUCTION

The transportation sector is the largest contributor to greenhouse gas (GHG) emissions in the
US, accounting for a 28% of total CO2 emissions (EPA, 2023). As such, it presents a criti-
cal challenge for climate change mitigation. The sector’s transformation through electrification,
automation, and intelligent infrastructure offers promising avenues for substantial emissions re-
ductions (Sciarretta et al., 2020, International Energy Agency, 2023, McKinsey Center for Future
Mobility , 2023). However, the success of these innovations critically depends on the availabil-
ity of accurate and comprehensive emission models to guide the design and deployment of new
technologies.

The landscape of emission modeling is vast (Mądziel, 2023), but the Motor Vehicle Emission
Simulation (MOVES) (USEPA, 2022), provided and maintained by the Environmental Protection
Agency (EPA), serves as the official and state-of-the-science emission model in the U.S. Despite its
established use, MOVES is primarily tailored for specific governmental applications, such as State
Implementation Plans and Conformity Analyses. Its complexity, steep learning curve, and high
computational demands pose significant challenges for users outside of its intended governmental
context and trained practitioners. Furthermore, MOVES operates on a macroscopic level, making
it unsuitable for the microscopic analyses required by many Intelligent Transportation Systems
(ITS) applications.

Multiple ITS technologies, include eco-driving (Mintsis et al., 2020), stop-and-go wave miti-
gation, variable speed limit optimization (Zegeye et al., 2010), among many others, necessitate
microscopic emission models that can compute, in real-time, emissions from a single action taken
at each time step for a specific vehicle and environment. Existing adaptations of MOVES have
been developed aiming to bridge MOVES’ emission modeling with applications that require
faster, programmatic and microscopic processing, such as MOVES-Matrix (Liu et al., 2016) and
MOVEStar (Wang et al., 2020). These efforts have attempted to address these needs by either
pre-calculating emissions data or simplifying the MOVES framework. However, these variants
either require extensive storage space and MOVES expertise, or sacrifice accuracy and compre-
hensiveness for accessibility and speed, leaving a gap for ITS applications that demand both
detailed environmental data and user-friendly modeling capabilities.
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In response, this paper presents NeuralMOVES, a new generation of MOVES surrogate as an
effort to get microscopic models that are diverse enough (i.e. with comprehensive set of scenario
parameters) to capture real-world conditions, accurate enough to serve as a valid MOVES substi-
tutes, and lightweight enough to run in real time and be accessible for all types of users and use
cases. By employing reverse engineering to extract detailed emissions data from MOVES and
applying machine learning techniques, NeuralMOVES offers a surrogate model that combines
the comprehensive scenario parameters of MOVES with the real-time, microscopic modeling
capabilities required by ITS technologies.

The implications of our work are twofold: our models simplify GHG emission evaluation in
transportation-related analyses by providing a faster, programmatic alternative to MOVES and
enable control and optimization approaches by offering microscopic and environment feature-rich
models compared to alternative models.

2 METHODOLOGY

Our methodology encompasses three primary phases: data collection through reverse engineering,
surrogate model development, and validation.

Data Collection: We devised a reverse-engineering approach to MOVES, generating a com-
prehensive dataset by extracting instantaneous emissions data. This was achieved by designing
custom trajectory inputs into MOVES to isolate emissions attributable to specific vehicular
actions.

Model Development: We then constructed surrogate models using machine learning tech-
niques to fit the instantaneous emissions data. including neural networks and decision trees.
These models were designed to capture the complex relationships between vehicle dynamics and
environmental conditions, thereby enabling precise emission predictions at a microscopic level.

Validation: The surrogate models were validated against MOVES using a set of diverse
driving trajectories. This process involved comparing the emissions computed by our models
with those obtained from MOVES across various vehicle types and environmental conditions.
The validation helped in refining the models and confirming their accuracy and reliability.

3 RESULTS

The key results from the study are as follows:
Instantaneous Emission Dataset: Through reverse engineering moves, extensive instan-

taneous emission data were extracted. The study successfully generated a dataset with over
121 million data points mapping various vehicle and environmental parameters to instantaneous
emissions. This data is the backbone and ground truth used, and the surrogate models are
function approximations to replicate and interpolate the data.

Diversity Importance: Figure 1 shows the relationship between emissions and factors
such as vehicle age, type, road grade, temperature, and humidity. The analysis revealed that
the diversity of emission model is paramount, as parameters that are not usually considered in
reduced-order models affect emissions greatly. Newer vehicles tend to emit less, and road grade
significantly affects emissions, with some grades leading to emissions four times higher than
others. Weather conditions also influenced emissions, although the maximum variation observed
was about 10%.

Surrogate Model Accuracy: The surrogate models achieved a mean absolute percentage
error (MAPE) of 6.013% when compared to MOVES across more than 2 million scenarios. Figure
2 shows a detailed breakdown of error distributions across different model dimensions.

Model Architecture: Various machine learning models were explored (Table 1), with neural
networks showing the best performance. The optimal neural network architecture consisted of
three layers with a hyperbolic tangent activation function and a hidden dimension of 64.
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Figure 1 – Variations of raw instantaneous emissions extracted by reverse-engineering MOVES
across a) Vehicle Age and Road Grade; b) Type of Vehicle (Source Type) and Fuel Type; and c)
Temperature and Humidity. Results highlight the significant impact on parameters that reduce-
order emission model tend to ignore. Road grade, in particular, shows a variability of around
500% across different road grades. On the other hand, temperature and humidity shows a modes
10% variability in emissions, suggesting that emissions estimations can be extended across dif-
ferent regions with small correction factors.

Figure 2 – Distribution of Mean Absolute Percentage Error (MAPE) across over 2 million tests,
evaluating the performance of surrogate models against the MOVES standard for representative
trajectories and diverse environments. The MAPE, averaging 6.013%, illustrates the deviation
between the surrogate models’ emissions estimates and those calculated by MOVES. The er-
ror distribution, centered around zero, indicates a high precision and consistent accuracy of the
surrogate models in estimating emissions across diverse scenarios and trajectories. This figure
highlights the models’ robustness and reliability as substitutes for MOVES, suitable for both micro
and macro-scale environmental analysis.
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Table 1 – Surrogate model architectures and ablations with end-to-end error statistics.

Model type Architecture Training MAPE (%) MPE (%) MdPE (%) StdPE
Polynomial 3rd order 31.04 8.9 5.22 50.16
Decision Tree Depth 50 6.17 5.37 3.78 7.75
NN 2 layers, dim 5 11 epochs 149.73 124.43 65.64 165.17
NN 3 layers, dim 64 11 epochs 11.54 10.91 8.63 11.56
NN 2 layers, dim 5 300 epochs 7.85 6.04 4.81 9.44

NN 2 layers, dim 5
0.97 scaling 300 epochs 6.01 2.46 1.22 8.90

Trajectory Validation: As the final step of our validation analysis, we conducted a detailed
examination of individual trajectories to gain insights into specific driving cycle properties that
may influence the surrogate models’ performance.

4 DISCUSSION

With a 6% mean absolute percentage end- to-end error, the surrogate models effectively capture
the essence of MOVES and can serve as reliable substitutes for a wide range of applications.
The lightweight and user-friendly nature of the surrogate models empowers transportation pro-
fessionals and stakeholders, enabling them to reliably conduct microscopic and macroscopic (like
control-based approaches and eco-driving) analyses with ease and efficiency. This level of pre-
cision signifies a substantial advancement in the field, providing a more accessible and compu-
tationally efficient alternative to the industry-standard emission model. Moreover the surrogate
models’ ability to accurately capture the diverse emission profiles across a wide spectrum of
vehicle types, fuels, ages, road grades, and weather conditions, with over 22,000 unique profiles,
enables more realistic modeling and marks a significant improvement over existing reduced-order
models. Future Directions and Considerations include the integration of these models into
traffic simulation tools and the replication of this methodology to get models for other pollutants.
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