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1 INTRODUCTION

The boom of real-time trajectory data, enabled by the rapid development of wireless communica-
tion technologies, has enormous potential to revolutionize traffic control. Unlike the traditional
roadside sensors owned by municipal authorities (MAs) that can only monitor traffic at fixed
locations, such trajectory data can provide a holistic picture of the entire transportation network.
To exploit the benefits of trajectory data in the near future, one promising solution is to
enable collaboration between MA and mobility providers (MPs), such as mapping and ridesharing
companies, whereby MPs leverage the real-time trajectories provided by their fleets to help MA
make traffic control decisions. The reason for considering such a solution is two-fold. First, we
envision MPs to be the main source of trajectory data before the massive adoption of privately
owned connected vehicles (CVs). Due to high vehicle costs and the need for infrastructure
upgrades, the penetration rate of privately owned CVs is expected to remain low in the near
future, hence not sufficient to enhance traffic control. Second, such a collaboration has been
demonstrated effective in both academia and practice (Feng et al., 2015, Moradi et al., 2022,
Zheng et al., 2018). For example, DiDi has collaborated with MA in Jinan, China, to improve
traffic signal control with its trajectory data, reducing delay by 5-20% (Zheng et al., 2018).
However, one obstacle that may hinder the collaboration is MPs’ privacy concerns about
sharing their data. On the one hand, MPs can be concerned that the shared trajectory data
would disclose sensitive individual mobility patterns of customers, such as origin-destination
pairs and routing preferences, which can be used to infer identities, personal profiles, and social
relationships (De Montjoye et al., 2013). On the other hand, sharing aggregated MPs’ trajectories
can leak sensitive information about MPs’ operations, such as service coverage, fleet composition,
and key algorithm parameters (He & Chow, 2020), which may compromise their competitive
advantages and lead to economic losses. To the best of our knowledge, the research on privacy-
preserving collaboration between MA and MPs for traffic control is rare. Some existing works
attempt to tackle MPs’ privacy concerns by outsourcing the decision-making processes to MPs,
which do not allow the integration with MA’s detector data and hence may not be effective. Other
works devise synthetic data generation algorithms that may lead to the loss of data accuracy.
To effectively enable the collaboration between MA and MPs while addressing MPs’ privacy
concerns, we leverage a promising framework of federated learning (FL), specially designed to

TRC-30 Original abstract submittal



Qiging Wang, Chaopeng Tan and Kaidi Yang 2

train state-of-the-art learning-based models for distributed data owners without anyone having
to explicitly exchange their private data. Despite FL’s advantages, its application in traffic
control is sparse. Existing frameworks are generally based on horizontal FL (Liu et al., 2020),
which assumes the datasets of all data owners to be homogeneous. However, the data provided
by MA and MPs can be highly heterogeneous with different structures (e.g., traffic counts, fleet
trajectories, etc.), so horizontal FL is not suitable for our case.

To fill in these research gaps, we propose a vertical federated reinforcement learning algo-
rithm (herein named VFedlight) that combines vertical FL (Liu et al., 2022) and reinforcement
learning (RL) to enable the collaboration between multiple data owners with heterogeneous data
for traffic signal control (TSC). Our contributions are two-fold. First, we initiate the research of
designing privacy-preserving traffic control algorithms based on heterogeneous data provided by
multiple data owners (i.e., MA and MPs). Second, we develop an effective algorithm for collab-
orative TSC without compromising the privacy of data owners. To the best of our knowledge,
this is the first work that combines RL and vertical FL in transportation research.

2 METHODOLOGY

Consider an isolated intersection including a set of incoming lanes £ and a set of signal phases P.
We choose isolated intersections as an initial building block that can be extended to large-scale
urban transportation networks in future work. Let us denote the considered time horizon as a set
of discrete intervals 7 = {1,2,--- , T} of a given size At. We consider K +1 data owners, i.e., MA
(indexed by k = 0) and K MPs (indexed by k = 1,--- , K), which are interested in collaborating
to fuse their data and develop an RL-based TSC agent to make optimal signal control decisions
without compromising privacy. The MA has access to loop detector measurements, and each
MP k has access to the real-time trajectories of their fleets.

We formulate the TSC problem as a Markov Decision Process (MDP) M = (S, A, P, R,~),
where S = S'®S'®- - -@SK represents the state space with @ indicating the Cartesian product,
SO the state space of MA, and S, --- ,SX the states of MPs, A represents the action space, P
represents the system dynamics (i.e., SUMO simulation in this paper), R represents the reward
function, and ~ represents a scalar discount factor. The details of the MDP are as follows:
State space. We define MA’s state at time step t as sY = {pt, dy, {ctl}l€£}7 where p; € {0,1}/7!
represents a one-hot vector with the element corresponding to current signal phase being 1, d;
denotes the elapsed green time in the current signal phase, and c¢;; denotes the traffic count
on lane [ € L. We define the state of MP k (following Mo et al., 2022) at time step t as
sf = {nfl, dfl e where nfl and dfl denote the number of vehicles and average delay of MP k’s
fleet on lane [ at time step ¢, respectively.

Action space. The action at each time step is to decide whether to keep the current phase or to
switch to the subsequent phase. If the agent decides to switch, an intergreen time ¢, is allocated
to ensure safety. We further set a minimum green time t,,;, and a maximum green time %,,q.
Reward. We define the reward as the change of cumulative delay between two consecutive time
steps ry = Wi_1 — W;. Here, W; = vaztl w;+ denotes the cumulative delay at the end of time step
t, where N, represents the cumulative counts of all vehicles that have entered the intersection
from time step 1 to time step ¢, and w;; represents the delay of the ith vehicle.

To solve the MDP, we propose a Soft Actor-Critic (SAC) (Christodoulou, 2019) algorithm
with vertical FL-based privacy-preserving actor and critic networks (see Figure 1). Such a design
allows us to train the RL agent without any party having to exchange raw private states, which
preserves the privacy of both MA and MPs. In particular, the actor and critic networks are
jointly held by all data owners, whereby each data owner (MA or MP) maintains a local model.

We next use the actor network as an example to describe the integration between vertical FL
and RL, while a similar procedure applies to the critic networks. Specifically, MP k computes
a local output zéfa = f(f(sf;@k) using its private state sf, where f{f represents its local actor
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Figure 1 — The framework of VFedlight: (a) environment consists of multiple private data owners
(i.e., MA and MPs), (b) privacy-preserving actor, (c¢) privacy-preserving critic.

model parametrized by 6. These local outputs from MPs {zfa}szl are sent to MA, which, in

turn, computes the probability of taking each action using its local model f? (s?; zt{a ey zf;; 90)
parametrized by 6°. To facilitate the training of SAC, MA and MPs jointly update their local
models using Federated Stochastic Gradient Descent (Fed-SGD) (Liu et al., 2022) without sharing
their raw data, which requires the calculation of the gradients of the SAC actor loss function

£(+) with respect to the parameters of each data owner, i.e., %. Specifically, MA calculates two

types of gradients: (1) the gradients % for updating 8° and (2) % which will be sent to MP
t
k for computing % and updating 6*. Note that the local models are only accessible by data

owners themselves for both deployment and training, and the local output dimension is typically
much lower than the input dimension, meaning that the private state of each MP is transformed
via an unknown transformation with reduced dimensions. The only information being exchanged
is the local outputs and the corresponding gradients. It has been proved that adversaries cannot
estimate the true states or the local model only from such limited information (Liu et al., 2022).

3 RESULTS

We evaluate the performance of VFedlight via a 30-min SUMO simulation (Lopez et al., 2018)
of an isolated intersection during a typical morning peak (see Figure 2 (a)). We compare three
algorithms: (1) Actuated that uses the default actuated traffic signal control algorithm in
SUMO, (2) SAC that trains an RL agent using MA and MPs’ states without privacy protection,
and (3) our proposed VFedLight with privacy protection. We simulate the vehicle arrivals of
each approach as a time-dependent Poisson process with the arrival rate sampled from a Gaussian
distribution, where the mean is calculated as the product of a pre-defined base demand and a
scaler shown in Figure 2 (b), and the standard deviation is 10% of the mean value. Left- and
right-turn proportions are set to be 10%, respectively. The actor and critic architectures in SAC
and the local models in VFedlight are chosen to be Multilayer Perceptron (MLP). The intergreen,
minimum, and maximum green time are 3, 10, and 42 seconds, respectively. SAC and VFedlight
are trained on 300-600 demand (i.e., the base demand for NS and EW are chosen as 300 and 600
vehicles/h, respectively). The episode rewards during training are shown in Figure 2 (c¢), which
indicates that VFedlight converges to a similar performance as SAC, while still protecting the
privacy of data owners.

We then test the trained policies on three demand scenarios (i.e., 300-600, 250-550, 350-650)
shown in Table 1. By fusing MPs’ trajectory data, the average delay (AD) decreases significantly
by 13-37%. Moreover, we notice that the AD and the average queue length (AQL) of VFedlight
are very close to that of SAC. This shows that the consideration of privacy comes at a minimal
cost for our proposed method. Overall, VFedlight can reduce AD and AQL with satisfactory
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control performance without compromising privacy in the collaboration.
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Figure 2 — (a) An isolated intersection, (b) demand scaler, (c¢)episode reward during RL training.

Table 1 — Policy performance comparison on average delay (AD) and average queue length (AQL)

300-600 250-550 350-650
AD (second) AQL (veh) AD (second) AQL (veh) AD (second) AQL (veh)
Actuated | 215 (£52) 104 (£3.1) | 173 (£31) 77 (£17) 330 (£68) 18.9 (£ 4.6)
SAC 153 (£ 2.8) 6.6 (£ 1.6) 134 (£ 1.1) 5.3 (£ 0.6) 21.2 (£ 4.0)  10.6 (£ 2.4)
VFedlight | 17.6 (£ 3.1) 8.1 (+ 1.8) 151 ( 1.5) 6.3 (£ 0.9) 24.9 (£ 4.8) 132 (+ 3.0)

4 CONCLUSION

In this paper, we propose VFedlight, a privacy-preserving vertical federated RL approach, for
MA and MPs to collaborate on TSC without compromising privacy. Results show that VFedlight
can yield satisfactory control performance while protecting MPs’ privacy.
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