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1 INTRODUCTION
Eco-driving is a practical strategy for mitigating greenhouse gas emissions in urban transporta-
tion systems. By integrating eco-driving principles, intelligent transportation systems (ITS)
can nudge drivers towards greener and fuel-efficient behavior. This work introduces a novel
learning-based incentive design promoting eco-driving within the framework of reverse Stackel-
berg games. The proposed game is played between a finite set of followers (human drivers) and
a leader (system operator). While reverse Stackelberg games have been previously explored in
traffic networks, particularly in the context of routing games (Groot et al., 2015), it is typically
challenging to model the complex dynamics of traffic, the interaction among drivers, and their
responses to incentives. Therefore, we propose an approach where incentives are applied within
the space of policy parameters rather than directly influencing specific actions.

Prior studies have highlighted the effectiveness of incentive design in influencing driving be-
havior (Littlestone & Warmuth, 1994, Niazi et al., 2024). We use the framework of reverse
Stackelberg games (Groot et al., 2012) and incorporate learning-based strategies that optimize
eco-driving incentives. We further draw inspiration from methodologies that enhance the perfor-
mance of eco-driving vehicular control (Jayawardana & Wu, 2022). Deep reinforcement learning
(RL) has shown promising results in various sequential decision-making problems. In this paper,
we employ deep RL to design incentives that could influence human drivers in a transportation
network to adopt eco-driving principles. These incentives are designed to ensure compliance by
human drivers while adhering to the predetermined budget constraints of a system operator.

The contributions of this paper are twofold: firstly, we present a learning-based incentive
design under the framework of reverse Stackelberg games that effectively capture and navigate the
complexities of urban traffic dynamics; secondly, we integrate a regret minimization method to
accurately model drivers’ choices. Our results show the effectiveness of learning-based incentives
for adopting eco-driving, significantly reducing overall emissions.

2 PROBLEM DEFINITION
Consider an urban transportation system where a system operator aims to minimize driver
tailpipe emissions by incentivizing eco-driving. Let each driver in the system be indexed by i,
for i ∈ {1, . . . , N}. The emissions produced by driver i’s vehicle is denoted as xi(θ) and the
corresponding travel time as yi(θ), where θ = (θ1, . . . , θN ) represents a set of driving policies
chosen by the drivers. The cost to each driver i under policy θ, without any incentive, is given
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by ci(θ;λi) = λixi(θ) + (1− λi)yi(θ), where λi is the preference parameter of driver i, reflecting
the trade-off between emissions and travel time (λi ∈ [0, 1]). When an incentive γi is introduced
to driver i, the cost function modifies to ci(θ;λi, γi) = (λi+γi)xi(θ)+(1−λi)yi(θ), incentivizing
drivers to reduce emissions. Each incentive γi is bounded between 0 and 1 − λi. The planner’s
objective is to design an incentive scheme γ = (γ1, . . . , γN ) to minimize the total emissions under
a budget constraint B, as the following optimization problem:

min
γ

N∑
i=1

xi(θ) s.t.
N∑
i=1

γixi(θ) ≤ B and θi ∈ argmin
θ̃

ci(θ̃, θ−i;λi, γi) for i = 1, . . . , N. (1)

Here, θi is the chosen policy from driver i. The constraint ensures that the designed incentives
induce an equilibrium where each driver is minimizing their own incentivized cost, subject to the
actions of others and within the budgetary limit of B.

3 METHOD
We present our problem within the construct of a reverse Stackelberg game augmented by a
learning-based approach, which unfolds in two sequential stages. In the initial stage, a system
operator, the leader, determines an incentive rate γ offered to the drivers. Subsequently, each
driver, the follower, must decide on their driving behavior, specifically their acceleration, based
on a policy that integrates both their personal preferences and real-time observations.

Reverse Stackelberg Game The problem formulated in the previous section can be formu-
lated as a reverse Stackelberg game between a system operator and N drivers. The system
operator acts as a leader with decision variables γ = (γ1, . . . , γN ), where γi is an incentive given
to driver i to influence their action θi. The cost c0(θ1, . . . , θN ) of the system operator is the total
emissions

∑N
i=1 xi(θ) incurred by the drivers subject to the budget constraint

∑N
i=1 γixi(θ) as in

(1). The cost of driver i is ci(θ;λi, γi) as defined earlier. Under the full information case when
λi’s are known to the system operator, the game is played as follows. First, the system operator
announces the incentive function θ 7→ γ(θ), which is presented to the drivers as a contract. Sec-
ond, the drivers react to this incentive function and find policies that minimize their respective
cost functions. Then, based on the outcome θ of the game, the drivers receive the incentive
γi(θ) according to the commitment of the system operator. We consider the scenario of adverse
selection where the system operator does not know λi’s of drivers. In this case, the leader learns
the incentive function by learning drivers’ preferences through repeated interactions.

Deep Reinforcement Learning for Incentive Design For the decision-making of individ-
ual drivers, we employ deep RL to obtain a vector of driving policies, denoted by θ, which depends
on respective driver preferences λ toward emissions. Each policy θj is trained using Proximal
Policy Optimization (PPO) (Schulman et al., 2017) to translate the observed state—the position
and speed of both the ego vehicle and the surrounding vehicles—into an action that maximizes
the expected reward. The reward function depends on preference parameter λ, which impacts
drivers’ proclivity towards eco-driving. On the other hand, the system operator’s incentive design
problem is non-trivial because of the complexity of traffic dynamics and vehicular interaction
and the uncertainty in the transition matrix of sequential decision-making. To address this issue,
we again leverage deep RL to learn the most effective incentive issuance strategy by adapting to
both the traffic conditions and driver preferences.

Regret Minimization with Randomized Weighted Majority Algorithm After incen-
tives are issued, drivers find policies that minimize their respective regret functions. To this end,
we employ the randomized weighted majority (RWM) algorithm (Littlestone & Warmuth, 1994),
which is an online learning method for iterative decision-making processes. The RWM algorithm
maintains a set of weights, wj , corresponding to each policy θj . The probability of selecting a
policy is proportional to its weight, expressed as pj =

wj

W , where the total weight W aggregates
all weights. Following the outcome of each decision, RWM updates the weights to penalize the
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(a) Framework Overview (b) Road Network
(c) Driving policies trained in
different reward functions

Figure 1 – Overview of the incentive design framework, road network, and trained policies.

Table 1 – Results of emission and travel time on different scenarios

Scenario Emission Travel Time Incentive
Baseline 13.18± 0.15 149.01± 10.48 0.00
RL-based Incentive 12.87± 0.32 122.19± 21.37 25.30± 4.61
RL-based Incentive with RWM 12.18± 0.13 94.60± 5.21 25.67± 4.56

policies, with the update rule given by wj = wj · (1 − β) for policies leading to suboptimal
outcomes. Through iterative updates, the RWM algorithm ensures that drivers’ decisions are
continually refined based on the dynamic interactions with other vehicles and traffic.

4 RESULTS
Road Network and Simulation Setup To validate our proposed incentive design, we de-
signed a controlled experiment within a simulated environment: a simple closed-loop road net-
work with a signalized intersection, where the diagonal of the network is fixed at 100 meters.
The simulation uses the traffic microsimulation tool, Simulation of Urban MObility (SUMO)
platform, which allows for detailed modeling of vehicular dynamics (Lopez et al., 2018). In our
experimental setup, illustrated in Figure 1b, we dispatched 15 vehicles within the network, each
navigating the rhombus-shaped course and responding to the traffic signals.

Training Driving Policies We trained diverse driving policies on different preferences using
the PPO algorithm (Schulman et al., 2017). These policies, trained in 80% of high penetration
scenarios, were tailored for a spectrum of driver preferences regarding emission reduction without
any incentive, denoted by λ values ranging from 0 to 0.4 in increments of 0.05. To do this, the
reward function was designed as (Reward) = (1−λ) (Speed)

(Speed limit) −λ (Emission)
(Max Emission) to represent the

trade-off between travel time and emission. Figure 1c exhibits a trade-off between travel time
and emission. We denote these policies trained with different preference parameters as θi.

Learning-based Incentive Design Within the reverse Stackelberg game framework, the so-
cial planner’s aim is to minimize total emissions, quantified as

∑
i xi, while the followers, the

drivers, adjust their driving strategies according to both their personal preferences λi and the
incentive rates, γi, proposed by the social planner. These rates are drawn from a predefined
set Γ = {0, 0.05, 0.1, 0.15, 0.2}. Drivers choose their actions based on the minimization of their
individual cost functions, θi = argmin ci(θ;λi, γi).

Regret Minimization Adopting the RWM algorithm, we initialized the weights of all poli-
cies equally and updated them based on their performance. Each driver retains the individual
weight and probability, which was adjusted in accordance with the RWM update rule, thus en-
abling drivers to make informed decisions that account for both other vehicles’ dynamics and
the incentives received.

Result Analysis Our findings are numerically summarized in Table 1, which presents the emis-
sion levels, travel times, and incentives calculated for the baseline scenario and those augmented

TRC-30 Original abstract submittal



J.-H. Cho, M.U.B. Niazi, S. Du, T. Zhou, R. Dong, and C. Wu 4

Figure 2 – Scatter plot comparing average travel time and emissions under baseline and learning-
based incentives with and without the Randomized Weighted Majority (RWM), with the average
values indicated by stars. The color gradient represents the actual amount of incentive issued.

with our RWM-based incentive scheme. Notably, the application of RWM yields a significant
improvement over the baseline. Additionally, we illustrate these results graphically in Figure 2,
where each data point encapsulates the outcome of an individual driving scenario. The color
gradient in the scatter plot represents varying incentive levels, with the stark contrast between
the baseline and RWM scenarios underscoring the efficacy of our approach. The data delineates
a clear trend: implementing the RWM algorithm reduces emissions and effectively manages the
incentivization budget. This trend affirms the potential of a learning-based incentive design to
significantly elevate urban transportation systems’ sustainability.

5 DISCUSSION
This research introduces a novel learning-based incentive design for eco-driving tailored for the
reverse Stackelberg game framework. Our method is specifically designed to navigate complex
traffic dynamics and uncertainty inherent in sequential decision-making under incomplete infor-
mation. By integrating regret minimization techniques, the proposed approach demonstrably
reduces emissions by influencing driver behavior toward eco-driving. Our results show the po-
tential of this approach to achieve a significant reduction in traffic emissions. This work offers a
novel approach for managing urban traffic, while simultaneously transforming how we understand
driver behavior in the context of environmental sustainability.

References
Groot, Noortje, De Schutter, Bart, & Hellendoorn, Hans. 2012. Reverse Stackelberg games, Part I: Basic frame-

work. Pages 421–426 of: 2012 IEEE International Conference on Control Applications.
Groot, Noortje, De Schutter, Bart, & Hellendoorn, Hans. 2015. Toward System-Optimal Routing in Traffic

Networks: A Reverse Stackelberg Game Approach. IEEE Transactions on Intelligent Transportation Systems,
16(1), 29–40.

Jayawardana, Vindula, & Wu, Cathy. 2022. Learning Eco-Driving Strategies at Signalized Intersections. Pages
383–390 of: 2022 European Control Conference (ECC).

Littlestone, N., & Warmuth, M.K. 1994. The Weighted Majority Algorithm. Information and Computation,
108(2), 212–261.

Lopez, Pablo Alvarez, Behrisch, Michael, Bieker-Walz, Laura, Erdmann, Jakob, Flötteröd, Yun-Pang, Hilbrich,
Robert, Lücken, Leonhard, Rummel, Johannes, Wagner, Peter, & Wießner, Evamarie. 2018. Microscopic Traffic
Simulation using SUMO. In: The 21st IEEE International Conference on Intelligent Transportation Systems.

Niazi, M. Umar B., Cho, Jung-Hoon, Dahleh, Munther A., Dong, Roy, & Wu, Cathy. 2024. Incentive Design for
Eco-driving in Urban Transportation Networks. In: 2024 European Control Conference (ECC).

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, & Klimov, Oleg. 2017. Proximal Policy Opti-
mization Algorithms. arXiv:1707.06347.

TRC-30 Original abstract submittal


	 INTRODUCTION
	 PROBLEM DEFINITION
	METHOD
	 RESULTS
	 DISCUSSION

