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1 Introduction

This paper aims to understand how physics-based and AI models interact and supplement each
other in modeling car-following (CF) behavior. Physics-based CF models are grounded in robust
theoretical frameworks, offering a level of interpretability and trust in their output. Nonethe-
less, achieving a simplified theoretical exploration comes at the expense of modeling complex
dynamics and interactions in generalized traffic environments. This makes adopting traditional
CF models to automated vehicles (AVs) control more challenging, given the crucial need to real-
ize generalizability. Conversely, the emerging AI models (i.e., deep learning (DL)) offer unique
advantages in learning and adapting from data, particularly capturing non-linear complex rela-
tionships. Yet, this requires a vast amount of high-quality training data that is often limited
or unavailable. More importantly, the AI methods lead to models with few to no interpretable
insights, impairing traffic-level understanding.

Consequently, we see a shift in adopting AI-based models to supplement traditional CF
models – where they might fail – giving rise to physics-informed artificial intelligence (AI) models,
most famously physics-informed neural networks (PINN) (Mo et al., 2021, Cuomo et al., 2022).
The rigorous analysis of their approximation efficiency remains unexplored. In this work, we
want to understand the behavior of these physics-informed AI models. This entails analyzing
how AI models interact with traditional CF models and what expectations we have on the
synergy between the two.

Incorporating physics-informed AI into CF models brings multiple dimensions of analysis:
predictive accuracy, data needs, convergence, interpretability, etc. All these play a role in physics-
AI synergy. However, in this abstract we focus on the accuracy metric. Our interest here is to
investigate how the underlying physical features in different CF models across different families
synergies with AI models. We do so through theoretical error bound modeling and sensitivity-
based simulations.

2 Analysis of Physics-AI Synergy

This section examines how different CF families interact with or support AI counterparts by
analyzing the generalized error bounds (GEB) of CF behavior approximation. Fig. 1 illustrates
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a synergy training paradigm bridging physics and AI, distinct from both the physics-only esti-
mation and AI-only estimation approaches. We denote a specified CF model m from family n
as Fmn(·|θ⃗mn), where, θ⃗mn represents the parameters in Fmn. Likewise, we have Dmn(·|α⃗mn) to
represent different DL algorithms, where α⃗mn represents admissible set of tuning parameters. A
typical CF estimation using PINN framework is to train the optimal α∗

mn so to have θ⃗∗mn for
Fmn, as Eq. 1.

Figure 1 – Physics-AI Synergy Training Paradigm

α∗
mn = argmin

αmn

wF (∥Fmn(si(t)|θ⃗mn)−Dmn(si(t)|α⃗mn)∥2) + wD(∥x̂i(t)−Dmn(ŝi(t)|α⃗mn)∥2)

(1)

where wF , wD are the weights to balance the roles of Fmn and Dmn, x̂i(t) is the observed
trajectory for follower, i, at time step, t. ŝi(t) is the observed state in the current time step
(e.g., leader position, relative speed, etc.) for predicting the trajectory in the next time step,
si(t) is the collocation state to augment ŝi with additional samples from the multi-dimensional
distributions of ŝi(t) learned by DL, all while adhering to the physics constraints.

With training sets for si comprising N1 data points and for ŝi with N2 data points, we
further apply the quadrature rule to compute the training errors, ϵ1 = (

∑N1
i=1wsi |Fmn(si|θ⃗∗mn)−

Dmn(si|α⃗∗
mn)|2)

1
2 and ϵ2 = (

∑N2
i=1wŝi | ⃗̂xi−Dmn(ŝi|α⃗∗

mn)|)
1
2 , where wsi and wŝi are the quadrature

weights related to the underlying order, dw. We have the total training error under regularization
ϵT = (ϵ21 + λϵ22)

1
2 , where λ is the regularization term (Mishra & Molinaro, 2022).

The generalized total error with noise term υ, ϵG could be defined as, Eq. 2, with the
conditional stability estimates for convergence (Mishra & Molinaro, 2022), ϵG could be bounded
by Eq. 3 for an effective PINN.

ϵG =
∥∥F ∗(·|θ∗)− Fmn(·|θ⃗∗mn)

∥∥
2

(2)

where F ∗(·|θ∗) is the ground-truth CF model.

ϵG ≤ C0

[
wF ϵ1 + wDϵ2 + C

1
2
1 N

−η1
2

1 + C
1
2
2 N

−η2
2

2 + ∥υ∥2
]

(3)

where C0, C1, C2 are bounded constants, dependent on the learning accuracy of Dmn(·|α∗
mn) and

Fmn(·|θ⃗∗mn). η1 and η2 are related to the regularity of the underlying integrand (i.e, data input
space).
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Leveraging Eq. 31, we can infer that (1) increasing the number of training points helps
reduce the noise error, and (2) the most effective combination of physics and AI would likely
be a well-trained DL model (i.e., with lowest error) and a well-defined CF model (i.e., with
desired physical properties). This underscores the foundational assumption of CF models that
DL algorithms can effectively enhance parameterization to better describe CF behavior.

3 Results

We selected the Newell model and its three extensions – Laval-Leclercq (L-L), the Asymmetric
Behavioral Model (AB), and the Extended Asymmetric Behavioral Model (EAB) – as represen-
tative CF models for analysis. These models progressively incorporate additional parameters to
better describe CF behavior. Correspondingly, we chose AI counterpart models with increasing
model complexity (e.g., more representations to capture the spatial or temporal dependence)
for better accuracy: Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long
Short-Term Memory (LTSM), and LTSM with an attention mechanism (LTSM-attention).

In our analysis we use a small dataset of 16 stop-and-go trajectories extracted from NGSIM-
US101 dataset, partitioned into training and testing sets at a 3:1 ratio. Then ŝi includes 12
trajectories with N2 = 7500. We maintain a ratio of N1

N2 = 100 to generate si using Latin
hypercube sampling strategy (Raissi et al., 2019). We assign equal weights of WF = WD = 0.5.
Finally, our evaluation criteria is based on root mean square errors (RMSE) between the observed
and simulated positions.

The followings are some major findings drawn from Fig. 2. (1) The optimal physics-AI
synergy is achieved by combining the best performing models from both physics-
only and AI-only. Interestingly, the complexity of a CF model – as indicated by its number of
parameters – is less critical than its descriptive accuracy. The CF model that results in lowest
RMSE error, will be a better choice for optimal physics-AI synergy. The training error results
from the physics-only model (bottom row in Fig. 2a) indicate that the AB model outperformed
others, whereas the DL-only training identified the LSTM-attention model as the most effective
(leftmost column in Fig. 2a). These outcomes, together with Eq. 3, imply that a hybrid
approach combining AB with LSTM-attention could provide the optimal solution, as evidenced
by the synergy results (Fig. 2a). (2) More elaborated AI model could help the CF model
achieve better accuracy, as evidenced by the decreasing RMSE from the bottom to the top in
each column. More sophisticated AI models are adept at automatically selecting and extracting
the most relevant features, aiding CF models in learning more accurate parameters. (3) The
effectiveness of the physic-AI synergy heavily depends on the performance of the
chosen CF model. Choosing a poor CF model may limit the improvement achieved through
AI integration. A good CF model could highly enhance the DL generalizability. The synergy
performance of the Newell model or LL model is inferior to that of the AB and EAB, and even
falls short of the AI-only performance. This discrepancy arises because the AB and EAB models
are designed to capture more heterogeneity in driving behavior through various reaction patterns,
thereby guiding AI towards more precise learning. By analyzing training and testing errors of
the AB/EAB-AI synergies we see a good ability for generalizability. (4) The AI model could
help complex physics-models in reducing overfitting. This can be inferred through the
observation that AB-AI model outperforms EAB-AI model. Note that, AB model is specifically
tailored for human-driven vehicles (HDVs) under oscillation, whereas the EAB is designed for
commercial AVs. While the EAB model is indeed more flexible than the AB model, it can suffer
from overfitting due to its higher number of parameters, which may not be necessary for HDVs.

1From Eq. 3, it is evident that the bound depends on the number of training points, N . This complicates
the inference of error bounds for AI models characterized by memory loss (such as recurrent neural networks or
various configurations), because part of the data from N is lost during the training process. We do not address
this complexity in our current model, but plan to explore it in future extensions of this work.

Original abstract submittal



4

Interestingly, there are exceptions where EAB+LSTM-attention performs better than AB+CNN
and AB+MLP. This indicates that a well-structured DL could alleviate the overfitting issue to
certain extent. These findings are further substantiated by their performance on the testing
dataset (Fig. 2b).

(a) Training (b) Testing

Figure 2 – Physics-AI Synergy

4 Discussion and Planned Work

The preliminary investigation done in this work, reveals important insights that require further
attention. A pivotal finding from our research highlights the significance of training data in
achieving optimal physics-AI synergy. One can clearly note that the performance of a physics-
based CF model (or family) varies with the driving scenarios (or traffic properties) represented
in the data. This variation stems from the inherent design of CF models to optimally represent
specific aspects of driving behavior, such as stop-and-go, free flow, high-speed conditions, etc.
Consequently, the most suitable CF model for achieving optimal physics-AI synergy is the one
that, in expectation, exhibits the best performance across all driving scenarios. While our current
investigation is confined to predictive accuracy of stop-and-go data, the full paper will explore
how different driving scenarios influence the outcomes observed in this study. More performance
metrics would be included to rigorously examine the physics-AI synergy.
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