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1 INTRODUCTION

Increasing urban density and environmental concerns have led to the adoption of shared micro-
mobility (MM) solutions such as bicycles and e-scooters as sustainable transport options. These
solutions address challenges such as traffic congestion and pollution and are crucial for first—
and last-mile connectivity with public transport (PT) systems. Integrating MM with PT is es-
sential for improving urban mobility (Martens, 2007). In this context, utilizing PT data helps
predict MM demand, optimize bike fleet management, and enhance service efficiency and user
satisfaction by ensuring timely and reliable bike availability.

Recent research uses both traditional statistical methods and advanced deep learning tech-
niques to integrate PT data for MM demand prediction. While traditional methods like Poisson
regression and SARIMA are known for their interpretability, they often fall short in handling
complex urban dynamics (Yu et al., 2023). On the other hand, machine learning methods like
Random Forests and Gradient Boosting Machines and deep learning approaches like Graph Con-
volutional Networks (GCNs) and Spatial-Temporal Graph Convolutional Networks (STGCNs)
have improved addressing non-linear data relationships and spatial dependencies Goh et al.
(2019), Lin et al. (2018), Xiao et al. (2021). However, these methods typically overlook PT
checkout patterns influencing short-term and long-term bike demand, which could significantly
improve demand forecasting Lin et al. (2018). This study aims to address the research gap of
underutilization of PT checkout data, which provides crucial insights into MM demand at the
station level, where PT and MM interactions are most significant Martens (2007). This paper pro-
poses a novel approach integrating PT checkouts with MM demand data using a Multi-Channel
Spatio-Temporal Graph Convolutional Network (MC-STGCN) to enhance prediction accuracy.
In addition, external features such as weather are considered as an input to the framework. The
proposed model investigates various strategies for generating adjacency matrices and evaluates
different configurations to adapt to demand volumes.
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2 METHODOLOGY

The proposed MC-STGCN is designed to integrate subway checkout data from public transport
and external weather factors to capture both spatial and temporal dynamics for bike-sharing
demand prediction. The proposed methodology employs a graph representation of the urban
transport network. The nodes represent stations such as bike-sharing and subway stations. The
edges capture the connectivity between these entities, distinguishing the intra-mode (bike-to-
bike) and inter-mode (subway-to-bike) connections by feeding the adjacency matrices (calculated
given spatial proximity) into different channels. We construct detailed adjacency matrices to
model these relationships, enabling our network to address and leverage the complex interactions
within the transport system. Figure 1 presents a global overview of the architecture of the MC-
STGCN, which integrates PT checkouts data, bike pickups data, and weather data to forecast
micromobility demand.

Data preprocessing involves normalizing various time-series data streams using Min-Max
scaling (x′ = x−min(x)

max(x)−min(x)) and Z-score normalization (x′ = x−µ
σ ) to standardize inputs where x

is the original value and x′ denotes the normalized value. The model constructs spatial graphs
where nodes represent stations, using an adjacency matrix normalized as A = D− 1

2AD− 1
2 to

reflect station connectivity, where A denotes the adjacency matrix and D is the diagonal degree
matrix.

In the MC-STGCN architecture, each data channel processes its respective channel, employ-
ing graph convolution layers (H(l+1) = σ(Θ(l) · (D− 1

2AD− 1
2 ) ·H(l))) to capture local and global

spatial structures, where H(l+1) is the output features of the next layer, σ is the activation
function, Θ(1) is the weight matrix for layer 1, and H(l) is the input features from the current
layer. Temporal dynamics are incorporated through convolutional layers, synthesizing informa-
tion across time to predict demand more accurately. Integration at the fusion layer combines
these processed features, which are then utilized in the output layer to generate predictions
(y = Wout · x + bout), where y is the predicted output, Wout is the weight matrix of the output
layer, x is the input to the output layer, and bout is the bias from the output layer, effectively
capturing the interplay between different urban mobility modes and environmental factors.

Figure 1 – Overview of the proposed MC-STGCN architecture, where rt is the reset gate, zt is
the update gate, and h̃t is the candidate activation vector and σ denotes the sigmoid activation
function used in the gating mechanisms.
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3 RESULTS & DISCUSSION

This section presents the results of applying MC-STGCN to real data set of Manhattan’s Citibike
and subway system data. The study utilizes comprehensive datasets from 2022, including
hourly weather data, Citibike data aggregated to four-hour intervals and focuses on Manhat-
tan, equipped with 151 MTA (Metropolitan Transportation Authority) subway stations and over
1,800 Citibike stations, providing a framework for analyzing micromobility and public transport
usage within this urban network.

Figure 2 – (a) Distribution of New York Citibike and subway stations; (b) Distribution of MAE.

The geospatial distribution of bike and metro stations across Manhattan is shown in Figure
2(a), showing potential correlations with station density and usage patterns, impacting model
performance variably across regions. Four configurations of the model are considered as fol-
lows: MM: Micromobility only; MM-W: Micromobility + Weather; MM-PT: Micromobility
+ Public transport; MM-PT-W: Micromobility + Public transport + Weather. The Mean Ab-
solute Error (MAE) is measured to evaluate the methods’ performance. Figure 2(b) presents the
distribution of MAE, indicating that incorporating weather data generally enhances the model’s
predictive accuracy. Further improvements are observed when public transportation data in both
MM-PT and MM-PT-W is integrated, indicating that multimodal data integration is beneficial.

Table 1 – MC-STGCN Performance results

Metric Short-term prediction (4 hours) Daily prediction Weekly prediction
MM MM-W MM-PT MM-PT-W MM MM-W MM-PT MM-PT-W MM MM-W MM-PT MM-PT-W

MSE 0.0189 0.0187 0.0184 0.0182 0.0132 0.0128 0.0124 0.0122 0.0140 0.0138 0.0134 0.0132
MAE 0.1023 0.1015 0.1008 0.1005 0.0790 0.0782 0.0774 0.0770 0.083 0.0820 0.0812 0.0810
R2 0.2200 0.2250 0.2300 0.2320 0.4300 0.4600 0.4800 0.4820 0.4000 0.4450 0.5300 0.5500

The model’s performance at different horizon lengths demonstrates differences in accuracy
for urban mobility forecasting (see Table 1). The integration of distinct data sources as separate
input channels, contrary to a feature augmentation strategy, allows the model to develop spe-
cialized representations for each type of data, enhancing prediction robustness and accuracy by
15% compared to the MM scenario. Different temporal contexts within model configurations,
such as daily and weekly aggregations, significantly improved predictive performance, showcas-
ing the model’s capability to harness temporal patterns effectively as the MM-PT-W increased
the coefficient of determination (R2) by 13% for the daily resampling and 22% for the weekly
resembling compared to the same model configuration in 4-hourly frequency. This indicates that
the model extracts and leverages the long term patterns.

Station-wise performance analysis over epochs (test prediction iterations) indicates improved
model stability and convergence speed when multimodal data is used, as shown in Figure 3(a).
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The results show that the inclusion of subway data reduces the MAE. The model configuration
using PT data is able to reach lower MAE values; for instance, the MM-PT-W converges rapidly
to the lowest error to below 0.01. Besides, this figure shows that the convergence of the model
is enhanced by adding multimodal data. Models with subway checkouts exhibit a more stable
and quicker convergence, suggesting that transit data provides a critical temporal context that
enhances learning. In terms of geospatial distribution, the integration of subway data helps
to lower the MAE across Manhattan, which is illustrated by the prevalence of green markers
indicating lower MAE values in the heatmap shown in Figure 3(b). This underscores the spatial
correlation of prediction accuracy with station connectivity and urban dynamics.

Figure 3 – (a) MAE evolution over test set; (b) Heatmap of MAE values in Manhattan stations

4 CONCLUSION

This research investigates the integration of public transport (PT) checkout data with micro-
mobility (MM) demand prediction using MC-STGCN. By leveraging diverse data streams, the
developed methodologies enhance prediction accuracy and provide deeper insights into urban mo-
bility dynamics, facilitating effective MM fleet management. To complete our study, we explored
various predefined adjacency matrices. These matrices could be based on GPS timings from sub-
way to bike stations, enhancing our refinement of spatial relationship modeling. Additionally,
assessing our model’s performance across different temporal configurations—such as weekdays,
weekends, and peak hours, is crucial to understanding demand variability more comprehensively.
We are integrating real-time data feeds, including weather prediction and PT schedules, which
will be essential to enhance our model’s responsiveness. We are currently conducting multiple
experiments in this direction, and the primary results are promising.
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