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SHORT SUMMARY

This study examines the relationship between mean and variance of travel times on a
congested corridor using LWR theory, focusing on a freeway with a bottleneck and stochastic
peak demand. We establish conditions for typical counterclockwise hysteresis loops and explain
why deviations remain limited. Supported by numerical experiments, our results enhance
understanding of hysteresis patterns and aid in tra�c planning and control.
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1 INTRODUCTION

Travel time reliability is a critical aspect of traveler route choice in urban areas, with empirical
analyses showing it is nearly as important to travelers as the expected travel time itself (e.g.
(Prato, Rasmussen, & Nielsen, 2014)). Travel time variability provides a formal interpretation for
reliability, which we de�ne as the relationship between mean and variance of travel time, is often
approximated by a linear curve (e.g. (Kim & Mahmasani, 2015)). However, empirical data show
an anti-clockwise hysteresis loop between these two quantities, both at the level of individual links
((Fosgerau, 2010), (Kim & Mahmasani, 2015), (Yildirimoglu, Limniati, & Geroliminis, 2015)) and
at a network level ((Gayah, Dixit, & Guler, 2015)). The aim of this work is to investigate the
time-dependent relationship between mean and variance of travel time in a single corridor in the
context of rush hour speci�c tra�c dynamics. We analytically derive conditions for the occurrence
of anti-clockwise hysteresis loops and explain which tra�c �ow variables determine the shape and
size of the hysteresis loop. Fosgerau (Fosgerau, 2010) theoretically proves the occurrence of such
loops in a queuing system with decreasing arrival rate. Yildirimoglu et al. (Yildirimoglu et al.,
2015) use attribute the hysteresis in the day-to-day travel time variability to stochastic parameters
of vehicle travel time. Separate from the hysteresis in travel time variability are other phenomena
in tra�c research that bear the same name: Treiterer and Myers (Treiterer & Myers, 1974) de�ne
hysteresis as the separation of speed-density curves into an accelerating and a decelerating branch
ahead of tra�c disturbances. Zhang (Zhang, 1999) and Yeo and Skabradonis (Yeo & Skabardonis,
2009) o�er theoretical explanations for this e�ect. At network level, clockwise hysteresis loops
caused by rush hour congestion have been demonstrated in networks with particular topologies
(e.g. (Buisson & Ladier, 2009), (Saberi & Mahmassani, 2012)). This is due to di�erences in the
spatial distribution of vehicles during congestion on- and o�set (Geroliminis & Sun, 2011) and the
increased network instability during the o�set of congestion (Gayah & Daganzo, 2011).

2 METHODOLOGY

We model tra�c �ow on a link of length l with a downstream bottleneck capacity qbn using the
LWR ((Lighthill & Whitham, 1955), (Richards, 1956)) theory. The upstream boundary �ow qup(t)
follows a trapezoidal, piece-wise linear function governed by a probability distribution ϕ. The
space-time trajectory of the queue's tail is ψ(t). The travel time τ for a vehicle entering the
segment at time t is given by the following expression:

τ(t) = inf{T ≥ 0 : N(l, t+ T ) > N(0, t)}, (1)

We assume the queue length does not exceed the road segment's capacity.Then, the following
general solution can be formulated:
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Lemma 2.1. For every point (x, t) satisfying x < ψ(t) which is reached by at least one character-
istic curve, the physically correct characteristic is the latest emanating one.

Proof (Sketch). The lemma is proven by analyzing a discretized approximation of the upstream
boundary condition. Assuming the concavity of q(k), characteristics may intersect only if originat-
ing from the descending part of the boundary. We partition the decreasing branch into intervals
I1, . . . , In. De�ne qdiscr(t) as qup(tI) where tI is the lower bound of the interval I containing t. Ad-
ditionally, we linearize q(k) over the decreasing branch. Suppose two characteristic lines intersect
at (x, t), with c1 from I1 and c2 from I2, I1 < I2, and c2 is most recent. c1 must have crossed a
shockwave, representing the physically valid solution at this point in space-time. The continuous
boundary condition solution derives from this discretization method as intervals approach zero
length.

Figure 1 illustrates the lemma's approximation method. Figure 1a displays the transformation
of a continuously decreasing boundary �ow (blue) into three (red) or six (green) discrete steps.
Figures 1b and 1c show the resulting solutions. These steps propagate as shock waves. The
characteristics that intersect the point ( 43 , 25) are shown as dotted lines. It is straightforward to
verify graphically that only the later emanating characteristic represents a feasible solution of the
LWR theory in both cases.

(a) Discretized �ow (b) Approximate solution 1 (c) Approximate solution 2

Figure 1: Visualization of the discretized �ow and approximate solutions

3 RESULTS AND DISCUSSION

Lemma 3.1. Let qp be a random variable, and let τ1 and τ2 be functions of qp such that E[τ1] =
E[τ2] and ∆τ := τ2 − τ1 is a convex function for k ≤ kc. Also, assume that τ1(qp) > 0 and τ1 is an
increasing function of qp. Then, it holds that

Var[τ2] ≥ Var[τ1].

Proof.
Var(τ2) = Var(τ1 +∆τ) = Var(τ1) + Var(∆τ) + 2Cov(τ1,∆τ).

Expanding the covariance term:

Cov(τ1,∆τ) = E[τ1∆τ ]− E[τ1]E[∆τ ],

and substituting, we have:

Var(τ2) = Var(τ1) + Var(∆τ) + 2(E[τ1∆τ ]− E[τ1]E[∆τ ]).

Given that E[τ1∆τ ] =
∫
τ1(∆τψ(q)) dqp, and considering that ∆τψ(q) has a unique zero at q0 such

that ∆τ(q)ψ(q) < 0 for q < q0 and ∆τ(q)ψ(q) > 0 for q > q0, and the integral over this product is
zero, it follows that: E[τ1∆τ ] ≥ 0. The statement of the lemma follows.

The proposed clockwise movement of travel time in the (E,Var) plane is then a corollary of the
following proposition:

Proposition 3.1. Assume that τ1 = τ(t1), τ2 = τ(t2) with t1 ≤ t2, that E[τ1] = E[τ2] and that
v(k) = q(k)/k is a convex function. Then, Var[τ2] ≥ Var[τ1].
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Proof. We show that ∆τ is convex under the given assumptions. We de�ne τf (t) as the travel time
incurred by a vehicle starting at t if there were no standing queue, i.e. in the case of qbn = ∞ and
τq(t) as the residual travel time caused by queuing: τ(t) = τf (t) + τq(t).

∆τf : Omitted.

∆τq: Let ˆqp,1 be the earliest time so that the vehicle starting at time t1 experiences queuing
and let ˆqp,2 be the analogously de�ned time for t2. Since ∆τq(t) = 0 applies for qp ≤
ˆqp,1, ∆τq(t) is convex in this interval. For ˆqp,1 ≤ qp ≤ ˆqp,2, tq(t2) = 0 and d

dqp
τq(t1) =

d
dqp

N0(t1) · 1
qbn

=
d

dqp

∫ t1
0 q(0,t) dt

qbn
, which is a constant in qp due to the trapezoidal nature

of the upstream boundary �ow. We can conclude that ∆τq(t) is convex in this interval.
For all t ≥ τ̂2(qp), the term ∆τq increases according to the time necessary for the queuing
capacity to process vehicles that start at the upstream boundary between times t1 and t2,

i.e. d
dqp

∆τq(t) =
d

dqp

(∫ t2
t1
q(0, t) dt

)
· 1
qbn
. Given the trapezoidal shape of the boundary �ow,

it follows that ∆τq is a linearly increasing function over the interval [t1, t2]. Combining these
observations, ∆τq exhibits piecewise linear behavior, decreasing initially and then increasing,
thereby rendering it convex over its entire domain.

The simulation scenarios using the Cell Transmission Model (CTM) illustrate the theorized
hysteresis dynamics . Simulations span 240 time units on a 40-unit corridor with a downstream
bottleneck capacity of 25 vehicles per time unit. The fundamental diagram is triangular with a
free-�ow speed of 1, a critical density kc of 60, and a jam density kj of 240.

The upstream boundary �ow is given by q(0, t) = 20 + (qmax−20)
60 × t for t ∈ [0, 60], qmax for

t ∈ [60, 90], 10+ qmax− qmax
60 × (t−90) for t ∈ [90, 150], 10 for t ∈ [150, 180], and 0 for t ∈ [180, 240]

The value of qmax is normally distributed. 300 simulations were executed across high (µ = 40)
and low (µ = 30) demand scenarios with standard deviations of 10, 15, 20 and 25 of the mean,
respectively. Hysteresis is quanti�ed by the area within the loop.

Figure 2: Travel Time And Variances, Low Variance of Boundary Demand

Figure 3: Travel Time And Variances, High Variance of Boundary Demand

Linear regression models for �xed means exhibit excellent �ts with slopes m30 ≈ 114.79 and
m40 ≈ 1088.29, and coe�cients of determination R2 = 0.9962 and R2 = 0.9970. These results
are supported by Proposition 3.1, highlighting that excess variance between start times t1 and t2
re�ects sensitivity to changes in qp rather than variance of ϕ(qp), as shown by the piecewise linear
form of ∆τq. For the triangular shape of the fundamental diagram, stochasticity of demand has
no e�ect on travel times in uncongested conditions. Graphically, increases in σ do not a�ect the
horizontal mean distance, but mainly increase the vertical variance. Additionally, our analyses
indicate that hysteresis magnitude is more in�uenced by changes in mean peak demand than by
its variance.
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4 CONCLUSIONS

The presented model provides an explanation for the causes of the form and extent of hysteresis
in the relationship between mean and variance of travel time. It allows to quantify this type of
hysteresis without prior empirical validation, and to predict under which conditions a deviation
from the known and expected counter-clockwise direction of travel is possible. Lemma 3.1 pro-
vides a powerful and physically meaningful characterization of systems which exhibit this type of
hysteresis. Proposition 3.1 derives the convexity property for the delay caused by queuing e�ects:
when the boundary �ow increases, the upstream �ow between t1 and t2 increases linearly, while
the bottleneck capacity remains unchanged. For the delay caused by changes in the uncongested
regime, however, a strictly concave speed-density relationship can reverse this e�ect. However,
curves of this form are generally unusual in tra�c �ow modeling and only a minor role for travel
time delay in real-life transportation networks, which explains why clockwise movements are only
rarely observed empirically and, if at all, usually only as a sub-loop of a larger counter-clockwise
movement.
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