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1     INTRODUCTION 
Wider adoption of Electric Vehicles (EV) promises major benefits in terms of reductions in CO2 

and air pollution. However, access to charging infrastructure presents a major barrier to mass 

adoption and continued use of EVs. Wealthy residents of single-family homes with access to at-

home charging are over-represented among early EV adopters. Meanwhile, lower-income 

households and residents of apartment buildings or multi-unit dwellings are less likely to have access 

to home charging. Public charging infrastructure at service stations, workplaces and other public 

places (e.g., shopping malls and grocery stores), which allows people to charge their vehicles away 

from home, is therefore crucial to support wider EV adoption. The spatial and temporal variations 

in demand for this charging infrastructure are, therefore, heavily dependent on the scheduling of 

daily activities.  

 

Charging scheduling has attracted much attention in the literature as it helps to effectively manage 

limited charging infrastructure and power grid capacity, thereby relieving EV users' charging 

anxiety. There have been several works focusing on the optimization of charging infrastructure 

delivery, assuming exogenous vehicle demand (Mukherjee & Gupta, 2015; Pasha et al., 2024). Some 

studies focus on maximizing the grid-side benefits, such as minimizing the grid operation cost and 

balancing the load in the power distribution (Dean et al., 2023; He et al., 2012).  Other works have 

prioritized user benefits, aiming to minimize charging costs and waiting times whilst maximizing 

the average state of charge (SOC) (An et al., 2023; Yin et al., 2021). More recent studies incorporate 

environmental considerations into EV charging scheduling, designing a framework to maximize the 

use of renewable energy or minimize greenhouse gas emissions (Babaei et al., 2024; Yang et al., 

2024). However, these studies tend to make oversimplified assumptions about individual behavior 

that can result in suboptimal solutions.  

 

Rather than focusing on network optimization, some studies have analyzed individual consumer 

preferences for charging patterns, including details on charging times, public charging locations, and 

charger types (Fang et al., 2020; Hardman et al., 2018; Visaria et al., 2022). These studies typically 

use stated choice experiments to elicit the charging preferences of existing and potential EV owners. 

However, these studies treat the demand for vehicle charging as direct, therefore omitting the 

inherent link with daily scheduling behavior.  

 

This study aims to fill the gaps by incorporating EV charging into activity scheduling to capture the 

inherent links and tradeoffs between charging and activity scheduling. This study contributes to the 

literature on modeling EV charging behavior in two ways. Firstly, we propose and develop a 
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framework for simultaneous scheduling of charging and daily activities. The activity scheduling 

choices include activity types, starting time and duration, and location. The charging scheduling 

choices are charging location, charging starting time and duration, and charging mode. This 

approach is able to capture the trade-offs between charging and non-charging activities. Secondly, 

this study models charging behaviors at various locations to capture charging demand evolution. 

Charging mode is jointly considered in scenarios including home charging, work charging, and other 

public charging (e.g., at shopping malls) at a service station. Moreover, different types of charging 

modes (i.e., slow, fast, and rapid charging) are considered, and charging behaviors for different 

charging modes are modeled. 

 

2     Methodology 
Scheduling of daily activities is a complex process that combines multiple choices. The OASIS, 

which is an optimization-based activity scheduling framework, is able to simulate activity schedules 

by considering all choice dimensions simultaneously (Pougala et al., 2023). The modeling 

framework is characterized by its ability to schedule multiple choices, including activity types, start 

times, durations, modes, and locations (Pougala et al., 2022). It represents continuous time and 

explicitly models behaviors that influence decision-making, such as preferences and flexibility. The 

framework captures trade-offs in timing, locations, and modes of engaging in activities and 

incorporates a range of possible activities as opposed to a predefined set. Building on top of the 

OASIS framework, new components have been developed to model EV charging.  

 

The behavioral principle is that individuals schedule their day to maximize the overall utility derived 

from the activities they complete. We define it as the sum of a utility 𝑈𝑓 in Equation (1) associated 

with the whole schedule and utility components capturing the activity-travel-charging behavior: 

 

𝑈𝑓 = 𝑈 + ∑ (𝑈𝑎
𝑝𝑎𝑟𝑡𝑖

+ 𝑈𝑎
𝑎𝑐𝑡𝑖𝑣𝑖 𝑠𝑡𝑎𝑟𝑡+ 𝑈𝑎

𝑎𝑐𝑡𝑖𝑣𝑖 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+𝑈𝑎
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

+ ∑ 𝑈(𝑎,𝑏)
𝑡𝑟𝑎𝑣𝑒𝑙𝐴−1

𝑏=0 )𝐴
𝑎=0                (1) 

Where: 

• 𝑈 is a generic utility that captures aspects that are not related to any activities. 

• 𝑈𝑎
𝑝𝑎𝑟𝑡𝑖

  captures the utility of participating in different activities. 

• 𝑈𝑎𝑛
𝑎𝑐𝑡𝑖𝑣𝑖 𝑠𝑡𝑎𝑟𝑡 captures the perceived penalty created by deviations from the preferred activity 

starting time.  

• 𝑈𝑎𝑛
𝑎𝑐𝑡𝑖𝑣𝑖 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 captures the perceived penalty created by deviations from the preferred 

activity duration time.  

• 𝑈(𝑎,𝑏)
𝑡𝑟𝑎𝑣𝑒𝑙 captures the perceived penalty associated with travel between locations. 

• The charging utility 𝑈𝑎
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 captures the perceived penalty associated with charging 

decisions. 

 

Charging-related decisions include their battery’s SOC, charging location, charging mode, charging 

starting time and duration.  The charging utility captures the perceived penalty associated with low 

battery SOC levels, charging or not charging at activities (e.g., at home, work, shopping) or at public 

service stations, and charging duration for different charging modes. 

 

We derive the objective function from Equation 1. The choice of activity and charging schedule is 

explicitly modeled as a mixed integer optimization problem. The mixed integer optimization 

problem is formulated and solved using CPLEX mathematical programming modeling for Python.  

  

 

3     Results and Discussion 
We model the charging of an individual worker, Claire, from the Swiss Mobility and Transport 

Micro census which was used in the original model by Pougala et al. (2022). Without access to home 

charging, she relies on non-home charging infrastructure and has the option to choose from various 

locations, such as work and other public places (e.g., shopping malls) and service stations, while 
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considering different charging modes (slow, fast, or rapid chargers). We use a simulation approach 

with each of the 50 model runs, representing a different day (See Figure 1).  This simulates  Claire’s 

charging and activity behaviors over this period, capturing variability in behavior and charging 

patterns, which is crucial for understanding the dynamics in making charging decisions based on the 

model outcome.   

 

Figure 2 illustrates the relationship between activity participation and charging scheduling at 

locations. How often charging happens in conjunction with different activities is revealed and could 

be useful for planning the charging infrastructure. It indicates the need for charging infrastructure at 

the places where there is a high rate of charging occurrences. Furthermore, the EV user's preferences 

for charging speed are based on charging locations. For example, as shown in Figure 3, there is a 

tendency to charge faster when away from home. The charging behavior could inform where to 

invest in faster-charging technologies and identify locations where slower charging options are 

insufficient. 

 

 

 

 
Figure 1- An example of SOC changes during travel and recharges at an activity location for three consecutive 

weekdays 
 

 
Figure 2- Charging location decisions during the 50 weekdays 

 

 
Figure 3- Charging mode decisions during the 50 weekdays  
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4     Conclusions 
Having such a model allows us to realistically understand charging and travel behaviors with a high 

level of temporal and spatial resolution. It also enables the evaluation of the effects of alternative 

management strategies (e.g., Time-of-Use tariff, infrastructure build-out) on individual charging and 

travel behavior. A better understanding of EV drivers' charging behavior, including charging 

locations and mode choices, will inform guidance for EV use, charging infrastructure planning, and 

power grid capacity management and upgrades. EV charging data is currently scarce, as the charging 

market is still emerging and small—particularly concerning fast and super-rapid charging. This 

study introduces a new activity-based framework to estimate charging behavior. One limitation, 

however, is the lack of behavioral data for the calibration of the assumed model parameters. 

 

REFERENCES 
An, Y., Gao, Y., Wu, N., Zhu, J., Li, H., & Yang, J. (2023). Optimal scheduling of electric vehicle charging operations 

considering real-time traffic condition and travel distance. Expert Systems with Applications, 213. 

https://doi.org/10.1016/j.eswa.2022.118941 

Babaei, M. A., Hasanzadeh, S., & Karimi, H. (2024). Cooperative energy scheduling of interconnected microgrid system 

considering renewable energy resources and electric vehicles. Electric Power Systems Research, 229. 

https://doi.org/10.1016/j.epsr.2024.110167 

Dean, M. D., de Souza, F., Gurumurthy, K. M., & Kockelman, K. M. (2023). Multi-stage charging and discharging of 

electric vehicle fleets. Transportation Research Part D: Transport and Environment, 118. 

https://doi.org/10.1016/j.trd.2023.103691 

Fang, Y., Wei, W., Mei, S., Chen, L., Zhang, X., & Huang, S. (2020). Promoting electric vehicle charging infrastructure 

considering policy incentives and user preferences: An evolutionary game model in a small-world network. Journal 

of Cleaner Production, 258. https://doi.org/10.1016/j.jclepro.2020.120753 

Hardman, S., Jenn, A., Tal, G., Axsen, J., Beard, G., Daina, N., Figenbaum, E., Jakobsson, N., Jochem, P., Kinnear, N., 

Plötz, P., Pontes, J., Refa, N., Sprei, F., Turrentine, T., & Witkamp, B. (2018). A review of consumer preferences 

of and interactions with electric vehicle charging infrastructure. Transportation Research Part D: Transport and 

Environment, 62, 508–523. https://doi.org/10.1016/j.trd.2018.04.002 

He, Y., Venkatesh, B., & Guan, L. (2012). Optimal scheduling for charging and discharging of electric vehicles. IEEE 

Transactions on Smart Grid, 3(3), 1095–1105. https://doi.org/10.1109/TSG.2011.2173507 

Mukherjee, J. C., & Gupta, A. (2015). A Review of Charge Scheduling of Electric Vehicles in Smart Grid. IEEE Systems 

Journal, 9(4), 1541–1553. https://doi.org/10.1109/JSYST.2014.2356559 

Pasha, J., Li, B., Elmi, Z., Fathollahi-Fard, A. M., Lau, Y. yip, Roshani, A., Kawasaki, T., & Dulebenets, M. A. (2024). 

Electric vehicle scheduling: State of the art, critical challenges, and future research opportunities. In Journal of 

Industrial Information Integration (Vol. 38). Elsevier B.V. https://doi.org/10.1016/j.jii.2024.100561 

Pougala, J., Hillel, T., & Bierlaire, M. (2022). Capturing trade-offs between daily scheduling choices. Journal of Choice 

Modelling, 43. https://doi.org/10.1016/j.jocm.2022.100354 

Pougala, J., Hillel, T., & Bierlaire, M. (2023). OASIS: Optimisation-based Activity Scheduling with Integrated 

Simultaneous choice dimensions. Transportation Research Part C: Emerging Technologies, 155, 104291. 

https://doi.org/10.1016/J.TRC.2023.104291 

Visaria, A. A., Jensen, A. F., Thorhauge, M., & Mabit, S. E. (2022). User preferences for EV charging, pricing schemes, 

and charging infrastructure. Transportation Research Part A: Policy and Practice, 165, 120–143. 

https://doi.org/10.1016/j.tra.2022.08.013 

Yang, J., Yu, F., Ma, K., Yang, B., & Yue, Z. (2024). Optimal scheduling of electric-hydrogen integrated charging station 

for new energy vehicles. Renewable Energy, 224. https://doi.org/10.1016/j.renene.2024.120224 

Yin, W. J., Ming, Z. F., & Wen, T. (2021). Scheduling strategy of electric vehicle charging considering different 

requirements of grid and users. Energy, 232. https://doi.org/10.1016/j.energy.2021.121118 

  


