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1 INTRODUCTION

As any complex system, rail networks are vulnerable to delays and disruptions, caused by opera-
tional challenges, delay propagations, adverse weather events and technical failures. In real-time,
rescheduling actions are taken to maintain operational integrity and minimize disruptions to ser-
vice. Due to strict computational time constraint rescheduling is usually carried out neglecting
the presence of uncertainties with a substantial underestimation of the risks. Hence, there is the
need to correctly evaluate the risks to allow the dispatcher to take informed decisions and trust
the solutions approaches.

In real contexts, it is not always possible to assume that activity duration times are deter-
ministic and known in advance, as uncertainties may have a significant impact. The uncertainty
in activity durations can be represented as random variables, fuzzy numbers, or intervals, and
in the literature there is no universally accepted risk measure (Kou & Peng, 2014, Rockafellar
& Royset, 2013). Although train rescheduling is a relevant and well studied problem, in the
literature there are not many studies focusing on the evaluation of uncertainties associated to a
schedule (Zhan et al., 2024) and even fewer associated to the assessment of the risk of a train
schedule (Meloni et al., 2021). This is probably due to the computational difficulties connected
to scenarios and sampling methods.

Given a solution for the real-time train rescheduling problem computed using deterministic
methods, we asses the risk of its quality worsening in presence of uncertainty on the dwell time
duration. We assume that the dwell times are integers, their uncertain values are represented by
fuzzy numbers and the realised duration of an activity is only known after its completion. We
explore the evaluation of Conditional Value-at-Risk of the makespan in a temporal network with
fuzzy activity durations on the arcs.
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2 ACTIVITY NETS WITH FUZZY TEMPORAL VALUES

It is well known that a schedule can be represented by temporal activity networks and a commonly
used performance measure in activity scheduling problems is the Makespan C,,,4, or equivalently
Maximum Lateness Lj,q,. Let us model a solution for the train rescheduling problem using a
fuzzy temporal activity networks (FTANs) (Dellino et al., 2022), temporal activity nets with
fuzzy valued uncertain durations. Uncertain quantities will be represented in bold. A FTANs is
a pair (G, D), where G = (N, A) is a directed acyclic graph representing the activity precedences,
the set IV of nodes is associated with events, the set A of m arcs representing the activities, and
D = (D4,...,D,,) is the vector of fuzzy durations associated with the activities.

All quantities depending on the activity execution times are fuzzy quantities, including start-
ing and ending time of each activity and makespan C,,, (Dubois et al., 2003, Hapke & Slowinski,
1996). A fuzzy quantity is a fuzzy set of the real line IR. A fuzzy set M of the universe of val-
ues X is characterised by a membership function s taking value in the [0, 1] interval. For each
element x € X, pps(z) defines the degree to which z belongs to M = {x € X;un(z) € [0,1]}.
An a-cut of M is the crisp set M, = {z € X|up(x) = a}.

The duration of all the activities is a fuzzy number which is defined as a bounded support
fuzzy quantity whose a-cuts are closed intervals. We represent membership function of the
activity durations based on the full breakpoints ordered sequence (Fortemps, 1997). The decom-
position by a-cuts (Nguyen, 1978) can be used as a general approach to compute functions of
activity durations as C,qz. According to this method, the membership function pp(x) of F(D)
can be reconstructed from its a-cuts Fy, as up(z) = max{a: x € F,}.

3 COMPUTING RISK INDICES FOR THE MAKESPAN

As risk index we consider the Conditional-Value-at-Risk of the makespan at probability level
(CVaR,(Chnaz)), also known as Expected Shortfall. CVaR,(C,4z)) can be defined as the average
over the worst 7% cases. Meloni & Pranzo (2020) and Meloni & Pranzo (2023) introduced a
counting methodology to compute the expected shortfall of the makespan in scheduling problems
represented by activity networks where the processing times are integers and their equally possible
values belong to known intervals. This approach has been extended to FTANs in Dellino et al.
(2022).

The algorithmic scheme for the case of crisp interval durations introduced in Meloni & Pranzo
(2020) and Meloni & Pranzo (2023) can be summarized as follows:

e The conceptual scheme of the algorithms is a counting approach working backward. Start-
ing from the pessimistic makespan level, it counts the number of configurations leading to
makespan L. Then L is decreased and a new counting occurs. The iterations stop when
enough information is gathered to compute the risk indices at the desired probability level

Y-

e The counting step at a level L is done by considering the possible reduction transformations
on a specific critical subgraph (Meloni & Pranzo, 2020, 2023). If all the considered critical
subgraphs completely reduce by series and parallel transformations, then the proposed
approach computes the exact risk indices at level 7, otherwise an interval ([LB,,UB,]) of
the considered indices is returned.

In Dellino et al. (2022) the algorithmic scheme for crisp instances is extended to consider
fuzzy durations by decomposing the membership functions of the activity durations into a finite
number of a-cuts. For each selected level «, each fuzzy duration is cut at level . This phase
produces a set of crisp instances (activity networks with interval valued durations). An estimate
of the indices of interest is determined as the average of the related LB, and UB, obtained by
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the algorithm at each a-level. This method is simple to implement but it could be intractable if
ran for too many a-cuts.

In this work we introduce three different Decomposition Management Methods (DMM) to
control the number of evaluated a-cuts:

e The first method, Uniform Sampling (US(9)), uses all the « values uniformly taken in the
interval [0, 1] with a resolution of ¢ as step value. This method produces the best possible
results at the cost of a high running time;

e The second DMM, named Breakpoint (BP) uses the whole set of a values corresponding
to the breakpoints of all the fuzzy activity durations received as input;

e The third proposed DMM is indicated as Budget Constrained (BC(4, B)). To obtain the «
values, BC adopts a progressive sampling of the set of values in the interval [0,1] at step
6. The method has a computational budget available in terms of the maximum number B
of a-cuts to consider. At each iteration, a new single additional « value is identified on the
basis of an estimate of the best achievable increment for the quality of the decomposition.
BC stops either when the budget ends or because the decomposition cannot be further
improved by adding more a-cuts.

To compare two fuzzy values associated with a risk index we adopt a method based on
the representation of fuzzy numbers as a-level sets (Sevastjanov & Rog, 2006). It returns the
probabilities P(B > A), P(B = A) and P(B < A) for each pair of fuzzy numbers A and B.

4 RESULTS

On the basis of the computational results reported in Meloni & Pranzo (2023), we adopt the
algorithmic variant named SlI/Adv/mS which is able to determine a fast and extremely good
estimation of CVaR of the makespan. We use as test case 189 distinct rescheduling solutions
obtained for 24 different perturbed instances of the 2008 timetable of the railway network around
the central station of Utrecht (NL), which considers Utrecht, the busiest station in the Nether-
lands, and its 5 main traffic directions, branching toward Amersfoort, Arnhem and Germany,
Den Bosch, Amsterdam, and finally Rotterdam and The Hague. Each instance considers a time
window of one peak hour for a total of 79 running trains.

Table 1 — Results

DMM v | P(US(0.01) > ) P(US(0.01) = %) P(US(0.01) <) | T (s) #a-cuts
0.01 0 1 0 6.44 101
US(0.01)  0.05 0 1 0 6.52 101
0.1 0 1 0 6.54 101
0.01 0 0.68 0.32 0.19 3.0
BP 0.05 0 0.68 0.32 0.19 3.0
0.1 0 0.71 0.29 0.19 3.0
0.01 0 0.89 0.11 0.23 3.7
BC(0.01,7) 0.05 0 0.91 0.09 0.23 3.7
0.1 0 0.90 0.10 0.24 3.7
0.01 0 0.96 0.04 0.47 74
BC(0.01,18)  0.05 0 0.96 0.04 0.48 74
0.1 0 0.96 0.04 0.49 7.4
0.01 0 1 0 0.68 10.6
BC(0.01,00)  0.05 0 1 0 0.70 10.6
0.1 0 1 0 0.70 10.6

In Table 1 we summarize the results of the computational campaign where we compare 5
DMMs. Specifically, we set US(0.01) as the reference DMM and we compare BP and 3 versions
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of BC against it. In the first two columns we report the adopted manager and the ~ value,
respectively. In the next 3 columns we compare US(0.01) with the other DMMs, in terms of
the probability of US(0.01) being better, equal or worse than the DMM the row refers to, here
called . Finally the last 2 columns report, on average for each train rescheduling solution, the
total computation time and the average number of required a-cuts.

As expected, column P(US(0.01)>B) is always 0 since by construction US(0.01) cannot be
improved by other managers. On the other hand, its computation times and number of analyzed
a-cuts are much higher than for the other DMMs. Whereas the increase of « reflects only on a
marginal increase of CPU time as uncertainty grows and crisp instances are harder to solve.

BC(0.01,00) is able to perfectly match US(0.01) quality at a fraction of the required time and
a-cuts. The remaining 3 DMMs require even shorter CPU times at the expense of a faulty re-
construction (P(US(0.01) < %) > 0), but overall, none of the proposed approaches is dominated.

The results show how the proposed DMMs are able to estimate the fuzzy CVaR within short
CPU times and with excellent quality (all the crisp instances are in fact solved to optimality).
As future research we highlight the possibility to extend this approach to different quantile-based
risk measures (as VaR) and the development of more advanced DMMs schemes.
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