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1 INTRODUCTION

Recent years have seen a surge in interest in cooperative eco-driving at signalized intersections,
driven by its potential to contribute to climate change mitigation goals Huang (2018). In cooper-
ative eco-driving, a fraction of vehicles in the fleet are coordinately controlled to reduce the fleet
level emission. The rise of autonomous vehicles opens up new avenues for implementing these
technologies. Various studies have introduced methods for developing eco-driving controllers,
spanning from heuristic approaches to model-based and model-free techniques.

Optimizing eco-driving at the traffic network scale can yield the highest benefits, but it is
a significantly hard problem. Network decompositions are often performed to make the prob-
lem tractable. Many works then study eco-driving at a single-intersection or two-intersection
scope Mintsis (2020). Such decomposition strategies remain reasonable provided intersections
and traffic scenarios are modeled with consideration of eco-driving factors, regulated intersec-
tion throughputs to avoid overflow and bottleneck spillback, and the distribution of signalized
intersections is used in evaluation to prevent method overfitting to specific intersections.

However, many recent studies that use network decomposition overlook these desired require-
ments Xu et al. (2021). They often focus on devising methods at a few select intersections. An
alternative is to test eco-driving in the real world, but this is unlikely to scale. Consequently, the
devised methods risk failing to generalize across diverse intersections, and we may fail to observe
the (prospective) impact of eco-driving when executed at the network scale.

In this work, considering these requirements, we aim to leverage network decomposition
to devise eco-driving controllers that generalize. We then analyze insights that are derived
from applying them at diverse signalized intersections. Accordingly, we first model three major
US cities (Atlanta, Los Angeles, and San Francisco), each at the intersection scope capturing
major factors that affect eco-driving benefits. In total, we model 6000 signalized intersections in
simulations. Then, we use model-free multi-task deep reinforcement learning to learn eco-driving
strategies that generalize. Last, while ensuring the controlled throughput at intersections, we
evaluate the benefits of learned policies.
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We find that our eco-driving policies result in, on average, up to 14% emission benefits. We
further find interesting insights that were previously overlooked in smaller-scale analyses. First,
the impact of eco-driving factors (e.g., lane length and vehicle inflow) changes with the eco-
driving adoption level. Second, 70% of total emission benefits come from 20% of intersections at
every adoption level. However, the 20% of intersections that yield the 70% benefits change with
eco-driving adoption, calling for further research on how to deploy eco-driving gradually.

2 METHODOLOGY

Our method involves two main steps. First, we model traffic scenarios. Each traffic scenario
stems as a permutation of a set of factors (e.g., intersection topology, temperature, humidity,
etc.) that affect eco-driving benefits. We identify 33 influential eco-driving factors based on
previous literature. Each traffic scenario is then modeled within a high-fidelity agent-based
traffic simulator, replicating real-world intersections and calibrating for real-world conditions.
Due to the limited space, we omit the details and provide a summary in Figure 1.

FactorEmission cause Factor valuation Modeling choice Methodology

is affected by takes the values of is defined by is modeled by

Traffic-level modeling

Vehicle-level modeling

Behavior-level modeling

Figure 1 – A visual illustration of eco-driving factors and how they affect emissions
modeling. The legend on the top indicates how each column is connected. Emission cause:
Factors stem from different emission causes (only a known predominant cause is illustrated).
Factor: around 33 major factors affect vehicle emissions. Factor valuations: A list of factor
values we consider as each factor can take multiple values. Modeling choice: Indicates what
knowledge or data sources inform each factor/factor value. Methodology: Indicates how we
translate the modeling choice into our simulation-based analysis.

We use three levels of modeling of eco-driving factors. For vehicle-level, we capture the impact
of each factor by making them input to known vehicle emission models Sanchez et al. (2022). In
traffic-level modeling, we calibrate micro-simulations to reflect the effects of the factors. Last,
at behavior-level, we use deep reinforcement learning, as discussed next.

In behavior-level modeling, we look at learning eco-driving strategies that generalize across
scenarios. Each modeled traffic scenario originates as a multi-vehicle control problem and can
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be formulated as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP).
Then, the eco-driving problem can be formalized as a Contextual Markov Decision Process,
which manifests as the collection of these Dec-POMDPs. We seek a policy that can solve the
eco-driving CMDP using multi-task deep reinforcement learning.

We design a custom multi-task training scheme. First, we partition the scenario space into 28
partitions based on their scenario similarity. For each partition, we train a separate multi-task
deep reinforcement learning policy to solve the scenarios in that partition. During evaluations,
we also evaluate the zero-shot transfer performance of learned policies across partitions.

In every scenario, each eco-driving vehicle assesses features related to its own status, sur-
rounding vehicles in the ego lane and adjacent lanes, and Signal Phase and Timing (SPaT)
messages from the traffic signal. The learned policy governs the vehicle’s acceleration, and to
adapt to diverse environments, a context vector representing the intersection configuration is also
appended to each vehicle observation. We formulate the reward function as rit = vit−α1vit<τ−βeit,
where rit, vit, and eit denote the reward, velocity, and CO2 emissions of vehicle i at time t. Here,
α, β, and τ are hyperparameters. The term vit preserves low travel time, the indicator function
1vit<τ identifies vehicle idling, and the penalty on eit encourages reduced emissions.

As discussed earlier, regulating intersection throughputs is a crucial aspect of network decom-
position. One approach is to maintain the same throughput as status quo human driving with
new eco-driving strategies. However, this poses a challenge, as it transforms the reinforcement
learning problem into a constrained optimization problem. To address this, we control eco-
driving vehicles on incoming approaches using our learned controllers. Upon leaving, we revert
to typical human driving behaviors, preventing vehicles from exploiting rewards by exiting the
intersection too quickly. Practically, this approach effectively regulates intersection throughput.

Last, while our learned policy controls the longitudinal accelerations of eco-driving vehicles,
we do not restrict them from performing lane-changing maneuvers. We implement a hierarchical
approach: first, a pre-defined rule-based lane-changing controller assesses lane-changing suit-
ability for the current time step, and if needed, it takes control of both longitudinal and lateral
movements of the vehicle. Otherwise, the default learned policy governs longitudinal movements.

3 RESULTS

We assess the generalizability of learned policies by evaluating them in each of the three cities.
In analysis, we restrict improvements in intersection throughput in the range 0%− 1%. That is,
if learned policies do not meet this criterion, we default to the status quo human driving baseline.
This prevents overestimation of benefits due to reduced throughput. Given the lengthy incoming
approaches and non-saturation vehicle inflows in the cities under consideration, a minor 1%
improvement in throughput is unlikely to trigger a spillback effect. This conservative approach
prevents underestimation of benefits due to overly strict throughput constraints.

Figure 2a illustrates the annual average emission benefits in comparison to a calibrated Intel-
ligent Driver Model as the status quo human driving baseline. Learned policies exhibit up to 14%
benefits, showing their generalization capacity. Interestingly, we note non-linear benefit scaling,
where even a 10% adoption of eco-driving could result in a significant total benefit. Figure 2b
indicates that all these benefits are attained with less than a 0.6% increase in throughput.

In Figure 2c, we look at the correlation between controllable eco-driving factors and emission
benefits. Through Pearson correlation analysis, we find that at lower eco-driving adoption, vehicle
inflow, lane count, and traffic signal time affect the benefits the most. As adoption increases,
lane length and vehicle inflows become more influential. This highlights the need for further
research to optimize intersection compatibility for eco-driving.

To further analyze the benefit dynamics and the role of different intersections, in Figure 2d,
we show a Pareto chart for Los Angeles intersections revealing that 70% of emission benefits can
be achieved by implementing eco-driving in just 20% of intersections at every adoption level.
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However, the Venn diagram in Figure 2e illustrates the specific 20% of intersections delivering
the 70% emission benefits vary with adoption level. Intersections effective at lower eco-driving
adoption may not maintain the same efficacy as the adoption increases, further emphasizing the
need for careful deployment planning.

Figure 2 – a-b Annual average emission and throughput benefits. c. Correlation analysis of
how eco-driving factors affect benefits. d. Pareto charts showing emission reduction across Los
Angeles intersections. e. Venn diagram that shows the distribution of 20% of intersections that
yield 70% of emission under each adoption level.

4 DISCUSSION

In this work, we devised eco-driving controllers that generalize using network decomposition
as a modeling framework. Our evaluation across three major US cities unveiled novel insights
previously overlooked in eco-driving research. Future efforts will expand this analysis to more
cities, considering their unique intersection distributions to uncover additional potential learning
challenges and resultant emission benefits.
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