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 A high degree of standardization in operational processes is required to ensure efficient and effective air 
traffic management during the flight phases and ground-handling stages. Deviations and disruptions in the 
complex and closely interlinked handling processes often lead to delays, which as the day progresses can 
have an increasingly negative effect on airline operations - and indeed of the entire air traffic network. 
Ground-handling processes are considered aircraft turnaround and consist of the unloading and loading 
of freight and baggage, refueling, cleaning, catering, and the boarding and disembarking of passengers (cf. 
[1]). Aircraft boarding is always a critical process and mostly driven by the behavior of the passengers [2]. 
The duration of boarding is influenced by their air travel experience and their willingness or ability to follow 
boarding procedures. In fact, there is no feedback from the cabin about the current situation or indications 
of future conditions. It is reasonable to describe the cabin as a black box in today's digital age. This is more 
surprising given that most passengers carry their own transceivers (mobile devices) and thus technological 
solutions for feedback from the cabin do exist. 

In previous studies, we have already developed initial approaches by predicting boarding times with 
trained Long Short-Term Memory (LSTM) models [3] or by assessing the precision of sensor readings in the 
cabin [4]. The Corona pandemic, with the required minimum distances between passengers, showed that 
there is no operational monitoring capability in the cabin, but that this could have contributed significantly 
to process optimization [5]. The sensors do not necessarily have to be installed in the aircraft cabin, such 
as sensors in the seats or above a seat row. Mobile devices belonging to passengers could be used to 
determine positions and become part of a digitally connected aircraft cabin [6]. To solve the complex 
problem of optimizing boarding sequences, evolutionary/genetic algorithms are commonly applied. There 
are no approaches to solve this problem with machine learning (ML), which is also a consequence of the 
insufficient data availability. The previously implemented LSTM model [3] is based on a complexity metric 
to evaluate the current seating situation in the cabin [7] and a comprehensive set of input data is provided 
by a validated boarding simulation environment [1]. In the absence of sensors, boarding progress cannot 
be predicted at this time, and estimates for boarding times are based on the experience of on-site 
operators. The aircraft cabin is a challenging environment for a sensor network due to its design and 
confined space. Location-aware radio-based communication networks provide a technical solution for 
passenger state monitoring and handling (see Fig. 1). 

 

Figure 1: Trajectory of a single passenger including positional errors using radio propagation simulation [6] 
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From a research perspective, we want to answer three questions. (1) What sensor information needs to 
be provided at what quality? (2) How to cover domain knowledge in the ML models using complexity 
metrics? (3) How accurately could aircraft boarding times be predicted? 

Approach 
In the original research approach, the progress of boarding was predicted using 100% accurate feedback 
from an operational simulation environment. This approach was subsequently refined in two key areas. 
Firstly, different sensor configurations and their potential feedback were analysed. Initially, the focus was 
solely on improving the prediction. However, as the project progressed, the quality of the sensor feedback, 
the signal processing and the complexity of the sensor network were also considered. 

Fig. 2 (left) shows different regression models to predict passenger boarding time. The AdaBoost, Hubert 
Regressor, and Bagging Regressor algorithms are unable to learn the model effectively, resulting in high 
error rates. Random Forest and Cat Boost algorithms require significant training times. In our further 
experiments, we used XGB and added different sensor information to improve the prediction (Fig. 2, right), 
starting with the number of passengers already entered the cabin, added the size of the queue in front of 
the aircraft door, using a seat and compartment sensors to indicate used seats and utilization of capacities, 
and finally add a complexity metric (consider passenger and bag constellations in the cabin – domain 
knowledge). As Fig. 2 (right) illustrates, the predictive capabilities of the algorithm are reinforced by the 
incorporation of each additional sensor. Regarding the compartment and seat sensors, it appears that both 
provide comparable levels of information for the regression model; therefore, from an operational view, 
operators are encouraged to implement the more convenient sensor environment. 

  
 
Figure 2: (left) ability of ML models to learn the boarding process (error) and time needed for learning, (right) increase of 
model accuracy when adding additional sensor information and complexity metrics (covering domain knowledge) 

The preliminary outcomes are encouraging and indicate that further enhancements to the prediction 
model are feasible. 
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