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1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), referred to as drones, can organize themselves into swarms,
fostering collaboration and efficiency in sensor data collection within Smart Cities Butilă & Boboc
(2022). With their mobility, autonomy, and diverse sensors, drones have been widely used in the
transportation systems. For instance, drones can be used for an accurate monitoring of traffic
to detect traffic congestion at early stage. This allows traffic operators to apply mitigation
actions that decrease the carbon footprint of a sector with one of the highest carbon emissions
worldwide Barmpounakis & Geroliminis (2020).

Utilizing multiple low-cost drones over a wide sensing area offers a flexible alternative to
single high-profile drones. They complete sensing missions in parallel, benefiting from shorter
recharging times. This requires coordinated actions with autonomy and computational intelli-
gence Poudel & Moh (2022). Recent advancements in decentralized optimization and multi-agent
learning algorithms offer scalability and efficiency while maintaining privacy and autonomy Chen
et al. (2022), Qin & Pournaras (2023). However, developing, testing, and evaluating such so-
lutions is complex. Simulation environments simplify studying swarm intelligence and collision
avoidance algorithms by reducing complexity and environmental variables. In contrast, real-
world drone experiments indoors and even outdoors enhance realism and external validity.

To bridge this gap, this paper introduces a testbed to study distributed sensing problems of
drones, such as such as energy consumption, charging control, navigation and collision avoidance.
This testbed sets a stepping stone to emulate, within small laboratory spaces, large sensing areas
of interest originated from empirical data and simulation models. As a proof-of-concept, a multi-
agent collective learning approach Pournaras et al. (2018), Pournaras (2020) is applied to this
testbed to coordinate and optimize in a fully decentralized way the navigation and sensing of
drones. Furthermore, a potential field collision avoidance method is applied to predict the fields
of collisions and finds the optimal flying trajectories of drones to mitigate the risk of collisions
and sensing inefficiency. Extensive experimentation using real-world data in traffic monitoring
in Athens city Barmpounakis & Geroliminis (2020) validates the efficiency in traffic vehicle
observation, demonstrating the capacity of the testbed to move complex swarm intelligence and
collision avoidance algorithms for drones to real-world.
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2 METHODOLOGY

The proposed testbed relies on a model, which can be implemented in different lab environments.
At an abstract level, the testbed is modeled by the elements presented in the rest of this section.

(a) The sensing map in grid cells
and a possible plan (or path) of a
drone. The circles represent base
stations.
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(b) Optimized plan selection
of navigation and sensing
using EPOS collective learn-
ing Pournaras et al. (2018)
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(c) Collision avoidance with
PFG. The black vectors show
directions to target for the drone
and avoid the obstacle drone.

Figure 1 – A prototype of drones testbed for indoor sensing lab using both collective learning and
potential field collision avoidance approaches.

Drones. They communicate to interact with each other directly or via proxies. They run soft-
ware that implements swarm intelligence for distributed sensing. Each drone can run its swarm
intelligence software within the following continuum Fanitabasi et al. (2020): (i) offline/online,
remote, centralized computations (server), and (ii) online, locally on drones, distributed compu-
tations.

Sensing map. It is a 2D map over the spatial illustrative model where drones perform sensing,
shown in Figure 1(a). In this scenario, a finite number of base/charging stations, from where
drones depart and return, are set with fixed coordinates in the area. Besides, given a number of
points of interest, each is regarded as a grid cell that covers an area in the map. In the context
of a sensing task, each cell at a time period has specific sensing requirements that determine
data acquisition of drones. A higher sensing requirement in a cell represents a more urgent for
traffic monitoring over this area (e.g., the accidents or crucial intersection of traffic flow). Thus,
a higher number of sensing values is set at this cell, which requires drones to hover a longer time
over the cell to measure accurately. We assume the number of observed vehicles as the required
sensing values.

Swarm intelligence. It plans in a coordinated way the navigation and sensing of multiple
drones such that each self-select one plan (or a path) influenced by the selections of others. As
a result, the total sensing by the swarm matches well the sensing requirements of all cells. This
matching represents the relative approximation between the total sensed values per cell and the
actual sensing requirements per cell. Error and correlation metrics such as the root mean squared
error, cross-correlation or residuals of summed squares can estimate this matching Pournaras
(2020).

Collision avoidance. It is commonly used in robotics, that creates force to repel robots from
obstacles and attract them towards their goal. In this implementation, a dynamically sized Po-
tential Fields Grid (PFG) is created to the drone positions’ scale, travel distance per timestamp,
and minimum safe distance between drones to prevent collisions Sun et al. (2017). As shown in
Figure 1(c), a PFG is a 2D-grid of vectors created for each drone, where each vector points in
the direction the drone should fly at that position per timestamp.
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3 RESULTS

3.1 Testbed prototyping

(a) The Crazyflie 2.1, a versatile
open source flying development
platform that only weighs 27g.

(b) Indoor sensing environ-
ment using screen displaying
the traffic vehicles.

(c) A swarm of drones hovering over
the central business district of Athens
with 10 grids to record traffic flows.

Figure 2 – The prototyped testbed built with Crazyflies, big screen and pNEUMA dataset.

This testbed uses the Crazyflie 2.1, shown in Figure 2(a), because of its size, weight and
accessibility 1. This drone can be programmed in Python, and multiple Crazyflies can fly for
swarm applications. Crazyflie 2.1 can be mounted by multiple hardware decks to support dif-
ferent functions, such as camera, positioning, and wireless charging. Besides, we set a 75 inch
screen on the ground as an indoor map to emulate the outdoor sensing environments, shown in
Figure 2(b). The screen displays the video recorded from the satellite such that Crazyflies can
observe the traffic flow of vehicles. To show the significant and broad impact of the testbed on a
transportation scenario, we choose the congested downtown area of Athens in Figure 2(c), where
a swarm of drones hovering to record traffic streams of vehicles Barmpounakis & Geroliminis
(2020). During the coordinated plan selection via EPOS2, agents (or drones) self-organize into
a balanced binary tree as a way of structuring their learning interactions. The shared goal of
the agents is to minimize the sensing mismatch, i.e., the residual sum of squares (RSS) between
the total number of vehicles observed by drones and the total number of vehicles acquired from
pNEUMA 3, both in unit-length scaled. More information about EPOS is out of the scope of
this paper and can be found in earlier work Pournaras et al. (2018), Pournaras (2020).

3.2 Experimental Evaluation

We measure the sensing mismatch and the risk of collisions (i.e., the traveling distance that
drones are easy to collide divided by the total traveling distance) Candan (2021) using EPOS
with and without potential field collision avoidance, named EPOS-PF and EPOS respectively.
We also use EPOS with traditional Collision Avoidance, named EPOS-CA, as a baseline method.
In this method, drones with lower-priority sensing tasks are instructed to wait until those with
higher-priority complete their missions. Figure 3(a) and 3(b) illustrate that the proposed EPOS-
PF achieves significantly high sensing quality while mitigating the risk of collisions. Figure 3(c)
illustrates the real-time voltage of LiPo battery used in Crazyflie as well as corresponding actual
energy consumption during the mission. It proves the accurate model-based estimated energy
consumption, which further validates the applicability and realism of the testbed.

1https://www.bitcraze.io/products/crazyflie-2-1/
2EPOS is open-source and available at: https://github.com/epournaras/EPOS.
3https://open-traffic.epfl.ch/

TRC-30 Original abstract submittal



A. Chuhao Qin, B. Callum Lillywhite-Roake, C. Alexander Robins, D. Adam Pearce, E. Hritik
Mehta, F. Scott James, G. Tsz Ho Wong and H. Evangelos Pournaras 4

(a) EPOS-PF significantly de-
creases sensing mismatch com-
pared to EPOS-CA.

(b) EPOS-PF significantly pre-
vents the risk of collisions com-
pared to EPOS.
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(c) Comparison between accurate
and estimated energy consump-
tion.

Figure 3 – Performance comparison of the proposed method and baseline methods in sensing
mismatch, risk of collisions and energy consumption.
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