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Introduction 

Investigation of train delay evolution and prediction is one of the hot topics in railway operations research. This is required 

for the effective and efficient realization as well as the quality improvement of train services. A comprehensive literature 

review on data-driven approaches for train delay prediction has recently been presented in Tiong et al. (2023). The authors 

prefer to develop a framework including design concept, modelling and evaluation. Furthermore, six modules are also 

defined to evaluate the existing literature and identify possible research gaps. Predictions are classified into short- and long-

term with next station and multiple station coverage. The paper discusses the practicality of the models. Spanninger et al. 

(2022) review papers on train delay prediction and classify them as event- and data-driven approaches for multi- and single-

step predictions in deterministic and stochastic modeling schemes. It is reported that their stand-alone applications can 

produce acceptable predictions while their combined implementations are more effective. However, the authors claim that 

the implementation and calibration of the approaches are difficult. The above-mentioned reviews cover a wide range of 

papers investigating the train delay evolution and prediction problems. The Markov chains is amongst the techniques used 

for this purpose. The interpretability, transparency and stability support its applicability in this respect. Artan and Şahin 

(2022) and Şahin (2017) investigated the train delay evolution, propagation and prediction problems by using the discrete-

time discrete-space Markov chains. Having shown the workability of this discrete stochastic approach, in this paper we 

extended our research towards the continuous time Markov processes in order to investigate the stochastic evolution of train 

delays using the continuous probability functions of time. To the best of our knowledge, this modelling approach applied for 

train delay investigation is used for the first time in the literature. 

Methodology 

In the discrete time Markov chain case, transitions occur at steps with the corresponding probabilities defined in the one-

step transition probability matrix representing a discrete sequence of random variables. In the continuous time Markov 

processes (or chains), however, the transition probabilities can be defined in time in a stochastic matrix sized in finite 

number of states because the transitions can occur at any instant. The transition probabilities can be obtained by matrix 

multiplications in the discrete-time case while they are obtained by solving a set of first order differential equations in the 

continuous-time case (Solberg, 2009 and Nelson, 1995). 

The random variables indexed by a continuous variable t constitute a continuous time stochastic process having uncountably 

infinite set of variables X(t), t ≥ 0, which are related to each other. Therefore, the following equation representing the 

Markov assumption is used to simplify these inter relations in which for all state sequences j0, j1, j2, …, jn and all times t0 <  

t1 <  t2, …, < tn: 

 

 

 

This simplifying assumption expresses that the probability of being in any state at any time depends only on the most recent 

state (or information), disregarding the previous states at earlier instants. This further assumes that the length of time the 

process has been in the current state is not influential (i.e., the process is memoryless). Although this simplifying 

assumption is strong, it conforms to the actual train operation processes (e.g., sectional running and station dwelling) 

represented by delays as state variables.  

Another simplification is taken place for the actual train operation processes (e.g., sectional running and station dwelling), 

making use of the stationarity assumption represented by the following equation: 

𝑃(𝑋(𝑡 + 𝑠) = 𝑗|𝑋(𝑠) = 𝑖) = 𝑃(𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖) 

 𝑃(𝑋(𝑡𝑛) = 𝑗𝑛|𝑋(𝑡𝑛−1) = 𝑗𝑛−1, 𝑋(𝑡𝑛−2) = 𝑗𝑛−2, … , 𝑋(𝑡0) = 𝑗0) 

= 𝑃(𝑋(𝑡𝑛) = 𝑗𝑛|𝑋(𝑡𝑛−1) = 𝑗𝑛−1) 
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The stationarity assumption expresses that the probabilities for the same state transitions in the same time interval are the 

same during the entire processes. 

In the discrete case a transition could occur at the discrete point of time called epoch. The epochs, on the other hand, are the 

instants at which the transitions occur, in continuous time. The transitions are associated with the probabilities in the former 

while the transition between any distinct states i and j is associated with a transition rate ij in the latter. The meaning of the 

transition rate ij ( 0) is the speed of transition from current state i to next state j (or the number of transitions per unit 

time). The entire continuous time Markov process can be described by the transition rates between distinct states (i  j). For 

the diagonal elements (i = j), no transition occurs, and the rates are set as below: 

𝑖𝑖 = −∑ 𝑖𝑗

𝑗≠𝑖

 

The transition rates can be easily established from the data. Let Tij(k) be the kth transition time observed from state i to state 

j and nij be the number of transition instances. The estimated mean time from state i to j can statistically be calculated as 

follows: 

𝐸(𝑇𝑖𝑗) ≈
∑ 𝑇𝑖𝑗(𝑘)

𝑛𝑖𝑗

𝑘=1

𝑛𝑖𝑗

 

Hence, the corresponding transition rate is formulated as below: 

𝑖𝑗 =
1

𝐸(𝑇𝑖𝑗)
 

The transition between any two distinct states without any observations has zero transition rate (ij = 0). The formulation of 

the continuous time Markov process is completed once the transition rates matrix  is developed. 

It is talked about a continuous function of time pij(t) in the continuous case as opposed to the one-step pij or n-step pij(n) 

conditional probabilities in the discrete case. Therefore, a transition probability function pij(t) is defined as follows: 

𝑝𝑖𝑗(𝑡) = 𝑃(𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖) 

Without knowing anything about intermediate transitions in between, a pij(t) represents the conditional probability (between 

0 and 1) that the process is in state j at time t known that it was in state i at time 0. Because the process cannot be in two 

distinct states at the same time, the initial conditions can be defined as follows: 

𝑝𝑖𝑗(0) = 0 for 𝑖 ≠ 𝑗 and 𝑝𝑖𝑖(0) = 1 for 𝑖 = 𝑗 

In matrix form, it is represented by P(0) = I, where I is the identity matrix. It is inferred that for any t the sum of the 

probability functions of every state j for a given initial state i must be 1:  

∑ 𝑝𝑖𝑗(𝑡) = 1

𝑗

 

For a stochastic process with K distinct states, the number of probability functions is K2. These functions are obtained by the 

values in the transition rate matrix , either analytically or numerically. The analytic probability functions are in the form of 

linear first-order differential equations (called Kolmogorov differential equations) as follows: 

𝑑

𝑑𝑡
𝑝𝑖𝑗(𝑡) = ∑ 𝑝𝑖𝑘(𝑡)𝑘𝑗𝑘  or 

 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑃(𝑡) 

Given the initial or boundary condition P(0) = I, dP(t)/dt is the probability transition matrix with i, jth element dpij(t)/dt. The 

solution of the system of linear first-order differential equations is the set of probability functions based on the initial 

conditions. It can be noticed that the above equations are in the form 𝑓′(𝑡) = 𝑓(𝑡) with constant coefficients ij’s. 

Therefore, the solutions are the exponential functions.  
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Numerical Tests 

The open train operations data of The Dutch railways covering weekdays between September 4, 2017 and December 8, 

2017 are used to develop and test the model. Specifically, the total of 118 SPR (all stop local) trains travelling from 

Dordrecht (Ddr) to Den Haag Centraal (Gvc) on a 44.3-km line in approximately 56 minutes are considered. Train data was 

divided into training (70%) and test (30%) data set. 

The entire trip of each SPR train is assumed to constitute two types of processes, namely sectional running and station 

dwelling. Accordingly, two separate transition rate matrices (R and D, respectively) were developed based on the state 

transition durations (Tij) and numbers (nij) for trains in the training data set. In this extended abstract, only the sectional 

running between the control point (Rtst, 15.8 km) and station Rotterdam Zuid (Rtz, 16.9 km), and the station dwelling at 

Rotterdam Zuid. The complete model for the entire line will be developed in the full paper.  

The observed delays are grouped into eight non-overlapping delay states between -1.5 and 6.5 minutes with 1-minute 

interval, disregarding the outliers (1.76% of all delay data set). The transition rate matrices and transition functions for 

initial delay state zero min are shown in Figure 1 and Figure 2 for the sectional running between Rtst and Rtz, and station 

dwelling at Rtz, respectively. 

 

𝑅 =

[
 
 
 
 
 
 
 
−𝟎. 𝟖𝟓𝟎𝟔 0.8506 0 0 0 0 0 0
0.9463 −𝟏. 𝟗𝟗𝟕𝟗 0.8397 0 0 0.2119 0 0

0 1.0692 −𝟐. 𝟏𝟓𝟐𝟑 0.6917 0.3914 0 0 0
0 0 1.1050 −𝟐. 𝟑𝟕𝟏𝟔 0.6182 0.4175 0.2309 0
0 0 0 0.7246 −𝟏. 𝟔𝟓𝟕𝟔 0.5954 0.3376 0
0 0 0 0 1.0526 −𝟐. 𝟏𝟒𝟔𝟎 0.6767 0.4167
0 0 0 0 0 0 −𝟎. 𝟓𝟕𝟏𝟒 0.5714
0 0 0 0 0 0 1.0753 −𝟏. 𝟎𝟕𝟓𝟑]

 
 
 
 
 
 
 

  

 

Figure 1. Transition rate matrix and functions between Rtst and Rtz sectional running 

 

 

𝐷 =

[
 
 
 
 
 
 
 
−𝟎. 𝟔𝟒𝟎𝟑 0.6403 0 0 0 0 0 0
1.1712 −𝟏. 𝟗𝟕𝟔𝟏 0.8049 0 0 0 0 0

0 1.1447 −𝟐. 𝟐𝟐𝟏𝟓 0.7382 0.3386 0 0 0
0 0 1.1701 −𝟏. 𝟖𝟔𝟗𝟗 0.6998 0 0 0
0 0 0 1.2022 −𝟏. 𝟗𝟔𝟐𝟑 0.7601 0 0
0 0 0 0 1.1647 −𝟏. 𝟗𝟓𝟓𝟕 0.7910 0
0 0 0 0 0 1.2658 −𝟐. 𝟎𝟖𝟕𝟕 0.8219
0 0 0 0 0 0 1.1111 −𝟏. 𝟏𝟏𝟏𝟏]

 
 
 
 
 
 
 

  

 

Figure 2. Transition rate matrix and functions at Rtz station dwelling  

The transition functions can be used to estimate the long-term convergence to the state or steady-state delay. Figure 3 and 

Figure 4 show this convergence (partially in 10 min) for the sectional running between Rtst and Rtz and station dwelling at 

Rtz.  

Figure 3. Estimated states in sectional running process Figure 4. Estimated states in station dwelling process 
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Discussions and Conclusions 

Once the transition rate matrices are developed for the sectional running and station dwelling processes of SPR trains, it is 

possible to calculate various measures such as delay prediction of trains at the next station or control point (Rtst and Rtz in 

this case). It is apparent that the characteristics of the two exampled sectional running and station dwelling transition 

functions are different as shown in Figure 1 and Figure 2. For instance, the on-time trains with initial zero delay (p22(0) = 1), 

the proportion of on-time performance decreases fast approx. within the first two minutes in both processes. Thereafter, 

these trains continue deteriorating in the sectional running process (approx. only 6% on-time in 10 min) while keeping their 

on-time performance in dwelling process at a certain proportion (approx. 19% on-time in 10 min). Furthermore, the 

proportions of trains delayed 5 min or more (p27+p28) sums to 75% in the running process while the proportion of early 

trains (p21) gets increased fast in the first two minutes of dwell and converges to approx. 36% in 10 min. Similar more 

outcomes can be drawn in the same manner. Because the prediction can be a function of the running or dwelling process 

time, the prediction horizon can cover multiple sectional running and station dwelling; i.e., longer prediction horizon.  

It is apparent in Figure 3 and Figure 4 that the estimated states (weighted by the transition probabilities at a particular time) 

given the initial states for the sectional running and station dwelling processes of the respective section and station give 

different results, respectively. SPR trains running from Rtst to Rtz converge to approx. state 6 or 4 min delay up to 10 min 

sectional running time independent of the initial state. This implies that the time supplement in the running times of trains in 

this section (if any) is not effective to make up the initial delays (Figure 3). SPR trains dwelling at station Rtz converge to 

approx. slightly over state 3 or 1 min up to 10 min dwell time independent of the initial state. This implies that the buffer 

time added to the dwell time at this station is effective in reducing the initial delays (Figure 4). 

The functional form of transition probabilities also allows to predict the delay at the end of a time horizon given the delay at 

the beginning of the horizon (i.e., initial delay) depending on the process type. For instance, the predicted delays at the end 

of the sectional running between Rtst and Rtz and at the end of station Rtz dwell both fit to the actual delays with the 

coefficient of determination value of 0.90.  

The full model of the entire line is going to be presented in the full paper including comparisons. The characteristics of the 

Markov models including the continuous time Markov process are proved to be promising alternative for train delay 

analysis, evolution and prediction. It deserves more elaboration and the extended numerical tests. 
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