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1 INTRODUCTION

Last-mile routing is a combinatorial optimization problem usually formulated as the Traveling Sales-
man Problem (TSP). The generic TSP finds the optimal route (e.g., route with minimal travel time)
that a truck located at a warehouse can take to visit each consumer exactly once and then return to
the warehouse. While routes generated by TSPs may be efficient on paper, empirical evidence sug-
gests that they are often impractical, and drivers frequently deviate from them (Li & Phillips, 2018,
Merchán et al., 2022). Deviations occur as generic TSPs do not consider drivers’ preferences and ex-
periences (Özarık et al., 2023). Drivers progressively gain experience from repeated deliveries in the
same regions, which they use to create more practical routes than conventional TSPs (Ulmer et al.,
2020, Quirion-Blais & Chen, 2021). Experienced drivers, for instance, may possess knowledge of local
traffic patterns, recipient availability, or convenient stop locations. This study develops a learning
framework that extracts latent driver experiences from historical delivery routes and exploits them
within a data-informed heuristic to generate more practical delivery routes.

We present a human-centred routing framework for TSPs with soft time windows. Human-centred
algorithms leverage the workforce’s tacit knowledge and accumulated daily experience to improve
productivity and service quality. By valuing the workforce’s expertise, these refined algorithms align
more closely with the real world and aim to generate solutions that respect both the human element
and operational efficiency. We develop a Data-informed Insertion Heuristic (DIIH), which incremen-
tally creates a TSP tour based on a cost function inferred from past delivery routes taken by experi-
enced drivers (Campbell & Savelsbergh, 2004).

We apply our framework to the open-source dataset from Amazon’s Last-mile Research Challenge
(Merchán et al., 2022). In 2021, Amazon hosted the last-mile routing challenge, where the goal was
to understand why generic TSPs generate solutions that differ from the routes executed by experi-
enced Amazon delivery drivers and to ultimately reduce this gap by using data-driven methods. The
dataset includes over 6,000 historically realized TSP instances in the United States. For each TSP in-
stance, the actual sequence in which the driver visited the customers is documented and classified
into one of three quality classes: high, medium, or low. The route quality labels indicate the satisfac-
tion level of logistics planners at Amazon regarding a given observed route. These labels are based on
a route’s productivity, the driver’s experience, and customer satisfaction levels. Amazon ranked the
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competitors’ routing algorithms based on a disparity score measuring how closely they matched the
sequences in unseen high-quality labelled routes.

Our results indicate that the proposed framework effectively learns to generate high-quality route
structures and neighbourhood visit times (i.e., routes with few backtracks, smoother turning angles,
and times of visit with a high chance of recipient and parking availability) from historical routes.
These learned insights by the framework are transferable to new fleet drivers to assist them in plan-
ning their routes and improve overall efficiency and successful delivery handoff. We show that the
framework generates high-quality solutions for more problem instances compared to the benchmark.
Furthermore, we propose an alternative method (i.e., an energy-based model) to Amazon’s disparity
score for determining the practical performance of a routing algorithm. We explain how the two met-
rics differ and provide arguments for why the alternative method may be better suited to assess an
algorithm’s performance.

2 METHODOLOGY & EXPERIMENTAL SETUP

2.1 OVERVIEW

Figure 1 shows the high-level framework developed by this study. The framework has two phases - of-
fline and online. In the offline phase, the framework trains an ML classifier on the historical delivery
data using supervised learning. The classifier predicts the probability of a tour’s high or medium/low
quality in the field. We use five-fold cross-validation to evaluate the classifier’s generalization abil-
ity by iterative training and validating the model on different combinations of folds. Throughout the
splitting process, stratified random sampling ensures that the proportions of different route quality
classes are preserved in all subsets. We engineered two sets of features, differing in whether they
change as the delivery sequence changes: instance-related (e.g., number of stops, packages, and day
type) and route-related features (e.g., route duration and recipient availability likelihood). In the on-
line phase, the framework exploits the insights from the classifier within the DIIH’s cost function.
The DIIH dynamically inserts randomly selected unvisited stops into a partial tour. We determine
the best insertion position for an unvisited stop by using a cost function considering the added travel
time, the increase in the sharpness of turning angles, backtracking, and the change in the quality of
the visit times to the neighbourhoods present in the instance. Our framework uses the DIIH to create
a pool of solutions (i.e., capped to a one-second runtime) and then selects the highest quality so-
lution in the pool using the ML classifier. Note that the cost function and the classifier have a time
complexity of O(n), where n is the number of stops within the TSP instance.

2.2 BASELINE

Machine Learning Classifier. This study trains and compares three classifiers: Logistic Regression,
Random Forest, and Multi-layer Perception.

Data-informed Insertion Heuristic. The complete framework’s performance is benchmarked to
a solution with near-optimal total travel time and the Amazon competition’s winning algorithm by
Cook et al. (2022). We generate the near-optimal solution using OR-tool’s Guided Local Search (GLS)
capped to a one-second runtime. This study was implemented using a MacBook Air with an eight-
core Apple M2 chip and 16 GB of RAM.

2.3 PERFORMANCE EVALUATION METRICS

Machine Learning Classifier. The classifier’s performance is evaluated based on standard binary
classification metrics. These metrics include Accuracy, Precision, Recall, Negative Predictive Value
(NPV), F1-score, and Area Under the receiver operating characteristic Curve (AUC).

Data-informed Insertion Heuristic. We use two metrics to evaluate the solutions generated by
the DIIH: (1) The percentage of the solutions that the classifier predicts is of high quality. Note that
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Figure 1 – Visual abstract of the proposed framework.

we correct this percentage by accounting for the predictive value of the classifier. (2) we use Amazon’s
disparity metric to evaluate how well the framework replicates the high-quality labelled routes taken
by drivers.

3 RESULTS

Machine Learning Classifier. Table 1 compares the performance of the candidate classifiers. As can
be seen, the models generalize well to unseen data since they have consistent performance during
training and testing. We chose the Logistic Regression as the primary classifier in this study for the
following reasons: (1) it has the best training performance across key metrics such as recall, F1-score,
NPV, and the AUC, (2) it offers statistical information about the features’ significance and role in pre-
dicting the target variable, and, (3) it is particularly well-suited for low-latency applications due to its
simplicity and efficiency compared to more complex models.

Table 1 – Classifier performance during cross-validation and testing. For each metric, the best-
performing model during training is shown in bold.

Model Dataset Accuracy Precision Recall F1-score NPVa AUCb

Logistic Regression
CV Meanc 0.696 0.665 0.640 0.652 0.720 0.755
Test set 0.698 0.678 0.609 0.642 0.711 0.748

Random Forest
CV Mean 0.685 0.714 0.489 0.580 0.673 0.749
Test set 0.688 0.721 0.487 0.581 0.674 0.744

Multi-layer Perceptron
CV Mean 0.698 0.687 0.590 0.634 0.705 0.755
Test set 0.699 0.701 0.562 0.624 0.698 0.747

a Negative predictive value, b Area under curve, c Cross-validation

Our results indicate that both instance-related and route-related features are statistically signifi-
cant in predicting a route’s quality. The instance-related features show that the structure of medium/low-
quality routes is statistically different from that of instances with a courier-performed high-quality
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route. These features are potentially acting as proxies for route productivity. For instance, while con-
trolling for all variables, routes with more packages per stop are more productive and, thus, have
higher quality. The route-related features indicate that high-quality routes have fewer backtracks and
smoother turn angles. Additionally, they visit neighbourhoods at times more similar to those of his-
torical high-quality labelled routes.

Data-informed Insertion Heuristic. The proposed framework outperforms the benchmark by
generating a higher proportion of high-quality solutions. The classifier’s quality assessment of the so-
lutions reveals that our heuristic generates high-quality solutions for 92.0% of the instances. The clas-
sifier, while informative, is not infallible and possesses inherent limitations in its predictive power. To
adjust for the classifier’s predictive performance, we correct the proportions of expected high-quality
versus medium/low-quality routes based on the classifier’s precision score of 0.665 and an NPV of
0.720, as reported in Table 1. This correction implies that, on average, 66.5% of routes classified as
high quality and 100−72 = 28% of the routes predicted as medium/low quality are indeed high qual-
ity.

After the predictive value correction, it should be expected that 63.4% of our framework’s solutions
have a high quality, increasing the number of high-quality solutions by 18.9%, 19.8%, 12.3% compared
to the courier-performed routes, GLS solutions, and the algorithm by Cook et al. (2022). Note that the
predictive value correction assumes that the classifier’s performance generalizes well to unseen data.
This assumption is supported by the consistent results observed during cross-validation and testing
phases (see Table 1). While our method improves route quality, it does so at the expense of increased
travel time. The median travel time for the DIIH is 18.3%, 15.2%, and 12.7% higher than for the GLS,
Cook et al. (2022), and courier-performed routes, respectively.

Based on Amazon’s disparity metric the DIIH performs poorly compared to the benchmark. A
disparity score closer to 0 indicates a closer match between two routes. Cook et al. (2022) scored
an average of 0.019 dissimilarity on unseen data, earning the best score in the competition, whereas
our method achieved an average of 0.122. However, we argue that the disparity metric does not fully
represent an algorithm’s performance and our trained classifier may be a better alternative for this
purpose. (1) The disparity metric does not take into account the instance structure while evaluating
the similarity of two routes. Our findings suggest that high-quality routes have a significantly differ-
ent instance structure as compared to medium/low-quality routes. Thus, having a low disparity with
high-quality solutions does not indicate how well an algorithm will perform on instances with a sim-
ilar structure as historical routes with medium/low-quality labels. (2) The disparity metric does not
classify TSP solutions; it reports a similarity score that does not specify how good of quality a route is.
Our model, predicts a route’s quality class based on the instance structure, visit times to neighbour-
hoods, and the route’s overall structure.
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