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1     INTRODUCTION 
 

As cities around the globe continue to grow and evolve, managing urban traffic becomes an increasingly 

complex challenge. In this context, traffic speed estimation is fundamental for effective traffic 

management. It is essential for alleviating congestion, enhancing road safety, optimizing traffic flow, 

and improving urban transportation systems' sustainability. Research on speed estimation is an 

indispensable and vital component for the operation of the intelligent transportation system.  
 

Many research challenges remain in this field. One significant issue is the high data quality requirements 

of many data-driven approaches, such as the demand for high-resolution data and low missing rates. 

(Yang & Qian, 2019) list a comprehensive range of high-resolution datasets, including 5-minute interval 

speeds, traffic counts, incidents, weather, and local events, yet data availability and scarcity remain 

persistent challenges in speed estimation. Furthermore, much of the existing research is geographically 

limited to small networks or single highways. For instance, speed estimation in (Zhang, et al., 2020) and 

(Kim, et al., 2024) focus primarily on highway corridors. Even though a broader network was considered 

in (Yu & Gu, 2019), link-based methods require higher quality datasets and entail more significant 

computational costs and resources. Conversely, (Lopez, et al., 2017) use the mean speed of the clustered 

region to represent single link speed for travel time estimation, proving the adequacy of area-based 

approaches. It can also help mitigate data sparsity issues to some extent. Additionally, the current use 

of spatiotemporal relationships in traffic data is underdeveloped. (Yang & Qian, 2019) employs data of 

all road segments across different times of the day as spatiotemporal features without a deeper 

exploration of these relationships. Therefore, this study aims to build a daily area-based speed estimation 

system for a large-scale network with extremely sparse data by Random Forest (RF) regression. A 

spatiotemporal data encoder using Graph Convolutional Networks (GCN) and Gated Recurrent Unit 

(GRU) models has been constructed to capture the spatiotemporal interdependencies within traffic data. 

Moreover, to address the challenge of extreme data scarcity, we try to construct a system that primarily 

utilizes abundant loop detector data, which can be robust and perform comparably to the system that 

relies on probe data only. Experiments are conducted to explore which is the best-aggregated description 

of the local observations from loops that can accurately capture the variations in the mean speed. 

OpenStreetMap (OSM), probe data and loop detector data are used in the experiments focusing on the 

city center of Munich, Germany. 
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2     METHODOLOGY 
 

2.1  Step 1: data preprocessing 
 

2.1.1  Network and traffic data preprocessing 
 

The network is partitioned into simplified square grid units, referred to as a 'cell' in our study. The cells 

are defined as grid-area-based units measuring 1 km by 1 km, unless specified otherwise, corresponding 

to specific time slots. The effects of varying cell sizes will be discussed in Section 3. 
 

The raw probe data consists of individual GPS trajectories that contain significant noise. For instance, 

the initial and final segments often include parking-related movements, sporadic noise points that 

deviate substantially from the normal trajectory, and brief stops for parking during the trip. Therefore, 

all the trajectories are cleaned dedicatedly to eliminate the aforementioned types of noise. 
 

The presence of successive zeros is always a challenge when distinguishing between the absence of 

vehicles and null values in loop detector data. Consequently, sequences of zero values (more than three 

consecutive zeros) in the flow data have been removed from each detector to address this issue. 
 

2.1.2  Input features extraction 
 

The input features for speed estimation in this study are categorized into three main types: intrinsic 

features, loop detector features, and probe features. 
 

Intrinsic features are acquired from the network information from OSM, which are attributes that are 

constant over time and solely related to the geographical location of the cell: 
 

• Average speed limitation: The link-length weighted average of links’ speed limits in the cell. 

• Average road class: The average of the road class in the cell. 

• Major roads: A binary indicator reflecting the presence of a major road (motorway) in the cell. 

• Sum of betweenness centrality: The value to quantifies the centrality of nodes (intersections in 

the cell), characterizing the density and connectivity of the network within the cell. 
 

For the loop detector features, this study employs commonly used descriptive statistics to analyze traffic 

flow and occupancy. These metrics include the average flow, standard deviation of flow, first quartile 

of flow, median of flow, third quartile of flow, average occupancy, and standard deviation of 

occupancy. Each feature is calculated using data from detectors located within the specified cell.  
 

Regarding the probe features, two primary attributes are analyzed to provide insights into the traffic 

dynamics surrounding the cell, enhancing the understanding of its traffic characteristics: 
 

• Nearest speed: The speed of the closest trajectory to the cell that does not traverse the cell itself. 

• Nearest distance: This measures the shortest distance from the cell to the nearest trajectory. 

 

2.1.3  Spatial mean speed calculation 
 

The mean speed for each cell at one specific time slot (15-minute interval) is defined as total travel 

distance divided by total travel time: 

𝑆𝑗,𝑡 =  
∑ 𝑡𝑑𝑖,𝑗,𝑡

𝑛
𝑖=1

∑ 𝑡𝑡𝑖,𝑗,𝑡
𝑛
𝑖=1

      (1) 

 

Where 𝑆𝑗,𝑡 represents the spatial mean speed of cell 𝑗 at time 𝑡, 𝑡𝑑𝑖,𝑡 denotes the travel distance of the 

𝑖𝑡ℎ trajectory at time 𝑡 within cell 𝑗, 𝑡𝑡𝑖,𝑡 is the travel time of the 𝑖𝑡ℎ trajectory at time 𝑡 in cell 𝑗,𝑛 is the 

total number of trajectories at time 𝑡 in cell 𝑗. 
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2.2  Step 2: spatiotemporal data encoding 
 

GCN is a powerful neural network architecture designed to process data structured in graphs, utilizing 

convolutional techniques to effectively capture the graph's topological structure. On the other hand, 

GRU is a type of recurrent neural network optimized for sequence prediction tasks. In this setup, each 

cell map at a time interval is initially transformed into a graph structure, where each cell is treated as a 

node with connections to adjacent cells. The input features for each cell are transformed as the attributes 

for each node correspondingly. Subsequently, the input features are fed into both the GCN and GRU 

models to encode the spatiotemporal characteristics of the data. 
 

2.3  Step 3: random forest regression 
 

Random Forest is an ensemble machine learning method applicable to both regression and classification 

tasks. It builds upon the foundation of decision trees by aggregating multiple trees to form a "forest." 

The response variable 𝑌 = 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛 (spatial mean speed) is estimated by 𝑋 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 

(each 𝑥 is a set of explanatory variables as outlined in section 2.1.3). The training process of RF is 

structured into three primary steps: (1) Randomly select n samples from the training set data; (2) Train 

a regression tree on each of these samples; (3) Average the prediction results from all the trees. 
 

3     SPEED ESTIMATION PERFORMANCE 
 

This study conducts experiments focused on the city center of Munich, Germany, utilizing three distinct 

datasets. The first dataset, derived from OpenStreetMap (OSM), is used to construct the road network 

and to extract intrinsic environmental features. This dataset covers approximately 140 km² and includes 

about 16,000 links used for driving. The second and third datasets, comprising two months of probe and 

loop detector data, respectively, are provided by the Technical University of Munich (TUM), beginning 

in September 2022. The probe data includes 15,967 individual GPS trajectories, each tagged with a track 

ID, GPS coordinates, and timestamps. Meanwhile, the loop detector data includes readings from 5,386 

detectors, which record traffic flow and occupancy information at 15-minute intervals. Thus, 

considering the data characteristics, the speed is calculated for each region unit every 15 minutes. 
 

The study encompasses a total of 140 grid regions, each observed at 15-minute intervals from 7 AM to 

9 PM, resulting in a total of 478,240 cells. However, only 10,836 of these cells contain valid speed and 

input features suitable for training, indicating an extreme missing data rate of 97.7%. This significant 

data scarcity substantially impacts the training process and contributes to larger errors in general. The 

performance of the trained model is evaluated using several metrics: Root Mean Squared Error (RMSE), 

Normalized Root Mean Squared Error (NRMSE), and the coefficient of determination (R²). 
 

Speed estimation has been performed on different datasets using different selections of input features. 

The results are shown in Table 1. 
 

Probe data only: Use intrinsic features and probe features in speed estimation. Disregarding the data 

scarcity, probe data are generally the most reliable for estimating speeds. Thus, it's essential first to 

establish a baseline using only GPS data. This allows us to measure the additional value provided by 

loop detectors and to assess how well the loop detectors perform solely. 
 

Fusion dataset: Use intrinsic features, probe features, and loop detector features to estimate speed. With 

the most information, fusion dataset should have the best performance in estimating speed. Compared 

with "probe data only", the increase caused by adding loop features can be evaluated. 
 

Loop detector data only: Use intrinsic features and different combinations of loop detector features for 

the speed estimation. Considering the pros and cons, GPS data, while dependable, are often sparse and 

challenging to collect. Conversely, loop detector data are commonly available and abundant, yet they 

lack precision and are insufficient for accurate speed estimation. Therefore, it is worthwhile to 
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investigate how to optimize speed estimation that can approximate GPS data quality, particularly in 

scenarios where loop detector data are abundant, but GPS data are not available. Seven loop features are 

proposed in this study; it is also important to find the best combination of the local observations from 

loops that can accurately capture the variations in the mean speed. Three combinations of the loop 

features are tested: (1) Combination 1: average flow and standard deviation flow; (2) Combination 2: 

average flow, standard deviation of flow, first quartile of flow, median of flow, third quartile of flow, 

(3) Combination 3: all the seven features. 
 

Table 1 – Speed estimation performance using different input features 

Cell size Dataset RMSE (m/s) NRMSE R2 

0.8 km * 0.8 km 

Probe data only 3.608 0.330 0.574 

Fusion dataset 3.539 0.333 0.590 

Loop only (combination 1) 3.928 0.369 0.495 

Loop only (combination 2) 3.865 0.363 0.511 

Loop only (combination 3) 3.870 0.364 0.510 
     

1 km * 1 km 

Probe data only 3.571 0.342 0.512 

Fusion dataset 3.433 0.329 0.551 

Loop only (combination 1) 3.838 0.367 0.438 

Loop only (combination 2) 3.790 0.363 0.452 

Loop only (combination 3) 3.802 0.364 0.449 
     

1.2 km * 1.2 km 

Probe data only 4.006 0.355 0.597 

Fusion dataset 3.815 0.338 0.635 

Loop only (combination 1) 4.507 0.399 0.491 

Loop only (combination 2) 4.423 0.392 0.509 

Loop only (combination 3) 4.388 0.389 0.517 
 

4     DISCUSSION 
 

This study utilizes a spatiotemporal data encoder and Random Forest regression for area-based mean 

speed estimation across a large-scale network, utilizing extremely sparse data. Experimental analyses in 

Munich across various datasets and input features reveal that 1-km-sized cells incorporating all flow-

related features yield the best possible accurate speed estimations in the absence of probe data among 

all the scenarios proposed in this study. The inclusion of occupancy-related features does not 

consistently enhance performance, even though additional information is provided. However, due to 

time limitations and technical issues, the temporal encoding requires further refinement. Detailed results 

and additional refinements will be presented at the conference.  
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