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1 INTRODUCTION

Railway is an important mode of transport due to its high capacity, punctuality and sustain-
ability. Nonetheless, the overall energy consumption of railway systems is substantial worldwide
as the railway networks are rapidly expanding. More than 50% of the energy on railway op-
eration is consumed by train traction systems. Eco-driving is widely regarded as one of the
effective measures to reduce train operation energy, as the energy consumption for train traction
is mainly determined by train driving speed profiles. The aim of eco-driving is to find the most
energy-efficient driving style that can satisfy realistic operational constraints and adhere to a
predefined travel time between two stops.

The simplest train eco-driving problem investigated a train running on a flat track with uni-
form speed limits. To comply with actual situations, more practical conditions and constraints,
such as varying track gradients, varying speed limits, and nonlinear train characteristics, were
considered (see, e.g., Scheepmaker et al. (2017), for a review). The classic train eco-driving
problem is usually formulated as an optimal control problem (OCP). The OCP should be solved
to obtain speed and control profiles that can be used to guide train operations. In the literature,
there are two main kinds of methods to solve the OCP: indirect methods, direct methods.

Indirect methods, using Pontryagin’s maximum principle, first derive the analytical properties
of optimal control modes, and then design numerical algorithms to calculate the sequence of these
modes and the positions of their changing over (Albrecht et al., 2016). The complexity of the
algorithm design depends on the complexity of the grade profile and speed limits, since each new
problem requires tailored/sophisticated analysis on the optimality conditions. Different from the
indirect methods that need to analyse the optimality conditions of the OCP, by discretizing the
independent variable or state variables, the direct methods convert the OCP into a nonconvex
nonlinear program (NLP) or a graph formulation. Various techniques used to solve the problems
can be further summarized as three categories: 1) the first category of methods directly solves
the nonconvex NLP, such as pseudospectral method (Wang & Goverde, 2016, Ye & Liu, 2016); 2)
the second category of methods converts the nonconvex NLP (via approximation or relaxation)
into other forms that can be solved to global optimum, such as approximation to mixed-integer
linear programs (MILPs) (Wei et al., 2022) or convex programs (CPs) (Xiao et al., 2023), and
relaxation to CPs (Ying et al., 2023); 3) the third category of methods discretizes both of the
independent variable and the state variables to construct graph formulations, such as space-speed
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discretized graph (Haahr et al., 2017) and space-time-speed discretized graph (Wang et al., 2021),
which can be solved by (tailored) dynamic programming. But so far these methods either cannot
solve to global optimum or consume very long computing time.

This paper focuses on developing a new direct method that can solve the classic train eco-
driving problem to global optimum. In comparison with the existing methods, the main con-
tributions of this paper are highlighted as follows: 1) For the classic train eco-driving problem,
we reformulate the nonconvex constraints as either convex or bilinear constraints, and the refor-
mulated model has the same optimal solutions as the original model. The reformulated model
can be efficiently solved to globally optimal solutions using off-the-shelf solvers. 2) Extensive
numerical experiments are conducted to evaluate the performances of our proposed methods in
terms of solution quality and computation efficiency.

2 Methodology

We first present a widely-used formulation for modeling the classic single-train eco-driving prob-
lem which uses train location s as independent variable kinetic energy per unit of mass E(s),
i.e., E = v2

2 , and travel time t(s) at location s as state variables (Wei et al., 2022, Xiao et al.,
2023). The goal of the train eco-driving problem is to drive a train from a given position s0 to
a given position sf within a predefined trip time T , while minimizing net energy consumption.
The eco-driving problem can then be formulated as:

min

∫ sf

s0

F+(s)ds (1a)

s.t.
dE(s)

ds
=

F (s)− 2c2E(s)− c1
√
2E(s)− c0 −mg sin(α(s))

m
(1b)

dt(s)

ds
=

1√
2E(s)

(1c)

ϵ2v/2 ≤ E(s) ≤ v2max(s)/2 (1d)
Fmin ≤ F (s) ≤ Fmax (1e)

Pmin ≤ F (s)
√
2E(s) ≤ Pmax (1f)

E(s0) = E(sf) = ϵ2v/2. (1g)
t(sf)− t(s0) ≤ T (1h)
F+(s) ≥ F (s) (1i)
F+(s) ≥ ηregF (s) (1j)

where m is the total mass including static mass and rotating mass; F (s) is the force applied at
wheels at position s, positive for traction and negative for braking; c0, c1 and c2 are positive
coefficients of the running resistance; g is the gravitational acceleration and α(s) is track gradient
at location s; ηreg ∈ [0, 1) denotes the proportion of braking energy that can be reused; and F+(s)
represents the positive value of the force applied at wheels at position s.

We present two steps to reformulate the model (1). The two steps are: kinetic dynamics
reformulation and time dynamics convexification. After that, we can prove optimal solutions of
the reformulated model are the same as the original model (1). We use both the kinetic energy
E and speed v as optimization variables. Following the approach presented in Xiao et al. (2023),
a new variable z is introduced to convexify (1c). Combining the new variable with (1c), we have

dt(s)

ds
= z(s) (2a)

z(s) ≥ 1

v(s)
. (2b)
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Towards the resolution of the continuous model, we recast it into an NLP by discretization.
The journey between two stations is split into N intervals by choosing a set of discrete points sk,
with s0 = s0 and sN = sf , and ∆sk = sk − sk−1 for k = 1, ..., N . We choose a piecewise constant
control parametrization, i.e., F (s) = F (k), s ∈ [sk−1, sk). The NLP is summarized as:

min .
N∑
k=1

F+(k)∆sk (3a)

s.t.
E(k)− E(k − 1)

∆sk
=

F (k)− 2c2E(k)− c1v(k)− c0 −mg sin(α(k))

m
(3b)

t(k)− t(k − 1)

∆sk
= z(k) (3c)

z(k) ≥ 1

v(k)
(3d)

E(k) =
v2(k)

2
(3e)

Fmin ≤ F (k) ≤ Fmax (3f)
Pmin ≤ F (k)v(k) ≤ Pmax (3g)

ϵ2v/2 ≤ E(k) ≤ v2max(k)/2 (3h)
ϵv ≤ v(k) ≤ vmax(k) (3i)

E(0) = E(N) = ϵ2v/2 (3j)
v(0) = v(N) = ϵv (3k)
t(N)− t(0) ≤ T (3l)
F+(k) ≥ F (k) (3m)
F+(k) ≥ ηregF (k). (3n)

In the model (3), the cost function is linear, and the constraints are biliner or convex, which can
be solved to global optimum by off-the-shelf solvers such as Gurobi.

3 RESULTS

This section presents numerical results of the model (3) on an artificial but practical trip. The
planned trip time is 600 s. The gradients and speed limits are given in Fig. 1. First, we verify
the exactness of the convex relaxation (3d). The optimal solutions for ηreg = 0 and ηreg = 0.5
are given in Fig. 1. We can observe that speed profiles are below the speed limits, control force
profiles are within the force bounds, and the relaxation (3d) is always tight. The tightness of
the relaxation verifies that optimal solutions of the classic eco-driving problem can be generated
by solving the proposed model (3).

Second, we evaluate the advantages of the proposed convex relaxation. We solve a bilinear
model that replaces the convex relaxation (3d) with a bilinear equality, i.e., z(k)v(k) = 1, which
can be solved to global optimum by Gurobi 11.0 in theory. The computing time limit is set
to 1800 seconds. The numerical results are summarised in Table 1. For most instances of the
bilinear model, global optimum is not achieved within 1800 seconds. However, all instances of
the proposed model are solved to global optimum within one minute.

By convexifying the time dynamics, the nonconvex time constraints of the eco-driving prob-
lems can be efficiently solved. Mathematical proofs of the lossless convexification can be proposed
(in our future paper) and their validity is demonstrated by extensive numerical experiments,
which indicates that our proposed methods can deliver exact numerical solutions for the eco-
driving problem. Furthermore, the proposed method can be extended to consider the situation
with interference on trains, such as time window constraints.
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Table 1 – Performances of the proposed method.

Instance The proposed model (3) The bilinear model
Cost value [kWh] Compt. time [s] Compt. time [s] Optimality gap [%]

ηreg = 0 172.033 16.514 22.869 0
ηreg = 0.2 167.999 24.266 1800.111 0.887
ηreg = 0.4 163.820 42.492 1800.133 0.740
ηreg = 0.6 159.374 26.162 1801.017 0.761
ηreg = 0.8 154.425 40.634 1801.425 0.622
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Figure 1 – Optimal speed profiles of the proposed method.
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