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1 INTRODUCTION

Macroscopic fundamental diagram (MFD) describes the relationship between vehicle accumula-
tion and network production at the stationary condition (Daganzo, 2007, Geroliminis & Daganzo,
2008). Leveraging recent advances in MFDs, perimeter control presents an efficient and effec-
tive way to improve network performance by managing traffic flow at a macroscopic level and
reducing spatial dimensions in large-scale network traffic optimization.

Previous studies on perimeter control generally assume that the network dynamics are known
and will not change during the simulation horizon (Haddad & Geroliminis, 2012, Zhong et al.,
2018b). However, due to the complex and stochastic network scenarios, it is less likely to know
even the structure of all possible network traffic configurations and interactions. Consequently,
the conventional perimeter control schemes would be fragile to uncertainties. To address this
challenge, data-driven control (Chen et al., 2022, Su et al., 2023) that seeks to learn accurate
traffic dynamics from past measurements is pursued. Conventional machine learning approaches
to traffic dynamics are regression-oriented and prioritize fitting input-output data via supervised
learning with powerful function approximators. The dynamics are learned using the “open-
loop data”, i.e., the data collected before the control is devised and deployed. However, the
deployment of controllers will change the characteristics of the traffic system conversely, e.g.,
a new traffic signal control scheme can not only change the network capacity but also induce
a demand pattern variation. The regression-oriented control that learns traffic dynamics solely
from open-loop data may be inadequate for dealing with the traffic dynamics influenced by
controller deployment. Therefore, the learning process of traffic dynamics should be tailored to
the control objective, as the learning task is tied to the control purpose.

In this work, we propose a closed-loop learning ideology (using the “closed-loop data” and
it is known as Control Oriented Learning), which is tailored to the underlying control objective
(Sznaier, 2020). The iterative operation of controller design and traffic dynamics learning based
on closed-loop data facilitated obtaining the optimal control strategy. Moreover, closed-loop
data are generated from a microscopic simulation platform of real traffic networks (or real traffic
data collected after the control is deployed). Preliminary experiments verify the effectiveness
of the proposed method and the necessity of injecting the underlying control objective into the
perimeter control process.
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2 METHODOLOGY

A heterogeneous traffic network divided into L(L > 1) homogeneous regions is considered in
accordance with (Zhong et al., 2018a), with its dynamics formulated in the following affine form:

ṅ(t) = F(n(t), q) + S(n(t)) · u(t) (1)

where n(t) ∈ Rαn and q(t) ∈ Rαq denotes the state vector and demand vector, and u(t) ∈ Rαu is
the perimeter control vector. F and S are the drift dynamics and input dynamics, respectively.

For MFD systems with constant travel demand, the steady-state n∗ and the corresponding
control inputs u∗ can be solved from the steady-state equation (Zhong et al., 2018a). Let ñ ≜
n−n∗ and ũ ≜ u− u∗. The control inputs ũ are designed to minimize the objective function as:

min
ũ

Jc(ñ) =

∫ T

0
∥(n(t)− n∗)∥2dt =

∫ T

0
∥ñ(t)∥2dt (2)

where simulation time horizon T > 0, and ∥ñ(t)∥2 denotes the l2 norm of continuous function
ñ(t). In the context of constant demand scenarios, we propose to train a neural network model
to approximate the control inputs ũ(ñ):

ũ(ñ; A, θy) = A · y(ñ; θy) (3)

where y(ñ; θy) consists of all the hidden layers of the network parameterized by θy, and A is
the output layer. As previously mentioned, the traffic dynamics are influenced by the controller
deployment. To get rid of the limitation, we propose a closed-loop adaptive control algorithm,
in which there are two iterative operations for each simulation:

• Controller design: Given the traffic state ñk(t), gain ũk(ñk(t)) via the neural network.

ũk(ñk(t)) = A(k−1)∗ · y(ñk(t); θ(k−1)∗
y ), k = 0, 1, . . . (4)

• Dynamics learning: Update the traffic state ñk(t + dt), which is derived from equations
Equation 1 using ñk(t), ũk(t) by ODE solver.

where θ(k−1)∗ = (A(k−1)∗, θ
(k−1)∗
y ) denotes the optimal neural network parameters in the last

training simulation, and k is the simulation index.
For MFD systems with time-varying demand, the steady-state and the corresponding control

inputs are intractable to solve. Another perimeter control objective that minimizes the total
time spent (TTS) is adopted as follows. Additionally, it’s noted that the controller design is
similar to the constant demand scenario, except for the different objective functions.

min
ũ

Jt(ñ) =

∫ T

0
(

L∑
i=1

ni(t) + ρ∥u(t)∥2)dt (5)

3 RESULTS

3.1 Numerical Experiments

A two-region network as depicted by Zhong et al. (2018a) is considered in this scenario. The
simulation settings are n(0) = [240, 560, 1290, 3010](veh), q(t) = [1.58, 1.56, 1.54, 1.52](veh/s),
and the MFD function is Gi(ni) = (1.4877 ·10−7n3

i −2.9815 ·10−3n2
i +15.0912 ·ni)/3600 (veh/s).

In line with (Zhong et al., 2018a), the equilibrium is chosen as n∗
1 = 3000 (veh) and n∗

2 = 2819
(veh), resulting in accumulations for each direction are n∗ = [1500.5, 1499.5, 1410, 1409] (veh),
and the corresponding control inputs are u∗ = [0.5003, 0.4997] by solving steady-state equation.
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The state and control inputs evolutions are shown in Figure 1(a)-1(c), respectively. The
accumulation states can asymptotically converge in less than 4000 sec, and the control inputs
converge even faster (less than 3000 sec). Compared with the state and control evolutions
under Model Predictive Control (MPC), the proposed closed-loop control algorithm can achieve
comparative performance with the MPC, which validates the effectiveness and efficiency of the
proposed method.

(a) The four-state evolution (b) The two-state evolution (c) Control inputs evolution

Figure 1 – The simulation results

3.2 Microscopic simulation

A microscopic simulation as depicted in Figure 2 is adopted to further validate the performance
of the proposed control algorithm. The simulated network represents a two-region MFD system
(colored orange and green, respectively). The network comprises a total of 70 roads and 18
intersections (10 normal intersections applying the max-pressure algorithm, 6 sink intersections,
and 2 perimeter intersections applying the proposed algorithm). The roads within each region
are 500 meters long and comprise 4 lanes, while the boundary roads are 1000 meters long. The
total simulation time is 3 hours.

Region 2

Region 1

Static control signals 
(4 phases)
 

Static control signals 
(3 phases)

Perimeter control signals

Sink

Figure 2 – The simulated grid network

The time-varying demand input is shown in Figure 3(a), with both regions initially empty.
The compared scene is control-free, i.e., u12 = u21 = 1. Figure 3(b)-3(c) illustrate the evolution
of network accumulation, demonstrating a significant improvement in network states, and veri-
fying the efficiency of the proposed control algorithm in regulating traffic. The TTS comparison
is shown in Figure 3(d), which decreases about 35% after the controller deployment. The macro-
scopic data plots for the two regions are presented in Figure 3(e) and 3(f), revealing a higher
critical maximal throughput post-controller deployment. Furthermore, the network traffic turns
into a dissolving process earlier rather than falling into extreme congestion. These macroscopic
results further validate the effectiveness of the proposed adaptive perimeter control algorithm
with closed-loop data.
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(a) Demand pattern (b) State evolution (n1) (c) State evolution (n2)

(d) TTS (e) MFD plots (R1) (f) MFD plots (R2)

Figure 3 – The microscopic simulation results

4 CONCLUSION

This paper proposed a closed-loop learning framework for robust adaptive perimeter traffic con-
trol. Different from previous algorithms that learn traffic dynamics solely from open-loop data,
ignoring the effect of controller deployment, the proposed algorithm learned the dynamics from
closed-loop data. The iterative operation of controller design and traffic dynamics learning based
on closed-loop data facilitated obtaining the optimal control strategy. Preliminary experiments
and microscopic simulations validated the feasibility of the proposed method.
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