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1 Introduction

1.1 Background

Choice-based optimization combines demand modeling with optimization models for supply de-
cisions. The key challenge of choice-based optimization is the nonlinearity of discrete choice
models such as the multinomial logit model (MNL). Generally, three different categories of meth-
ods are proposed in the literature. The methods in Category I usually linearly reformulate the
MNL model using techniques of variable substitution (Haase & Müller, 2014). Category II
uses the unimodular constraint matrix to reformulate their choice-abased problem into a linear
programming problem (Davis et al., 2013). However, the methods in Categories I and II are con-
strained for specific problem structures, such as binary supply decisions and fixed attributes of
options. Category III uses simulation-based sampling to approximate the MNL model constraints
(Pacheco Paneque et al., 2021) with significant computational challenges for a large number of
sampling draws. Moreover, it is not applicable for continuous supply decisions because of its
discretized sampling method. The paper proposes an outer-inner approximation method for the
generic choice-based optimization problem with no specific problem structure requirement.

1.2 Problem definition

This subsection introduces the mathematical definition of the generic choice-based optimization
problem. To model customer behavior, define W as the set of scenarios and Rw the choice set
for scenario w ∈ W . For scenario w, µwr and θwr denote the deterministic utility and the chosen
probability of option r ∈ Rw. The general formulation for the choice-based optimization P0:

min f(θ,x), (1)
s.t. s = h(θ,x), (2)

µ = As, (3)

θwr =
exp (µwr)∑

r′∈Rw
exp (µwr′)

, ∀r ∈ Rw, ∀w ∈ W, (4)

x ∈ Ω, (5)
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where θ is the customer behaviour, x are the operation decisions, and µ is the utility of options.
In objective (1), the general cost f is influenced by service operations x and customer behavior
θ. Constraint (2) describes that the operation decisions and customer behavior determine service
levels. Constraint (3) defines the utility of options as a linear function of operations and customer
behavior where A is the coefficient matrix. Constraint (4) is MNL model for customer behavior.
Constraint (5) defines the feasible space of service operations given the practical requirements.

2 Methodology

2.1 MINLP reformulation

The main computational challenge comes from the nonlinear nonconvex constraint (4). We focus
on efficiently handling nonlinear constraints (4) in P0, involving the ratio of choice probabilities
of option pairs. Then, as introduced in Chen et al. (2023), we make the following assumptions:

1. θwr can only take values of 0 ∪ [ϵ, 1] where ϵ is a small threshold like 0.1%, that fulfills
the accuracy requirements of the application. We call options with non-zero probabilities
active options, otherwise, inactive options.

2. Consider the relationship (4) only for pairs of active options.
3. In comparison to active options, inactive options ought to exhibit inferior utilities, ensuring

that they cannot satisfy the relationship (4) with a choice probability no less than ϵ.

We argue that these assumptions are reasonable. In practice, the original MNL model assigns
exceptionally low probabilities to options, regardless of their inferiority as per constraint (4).
Numerically, assumption 1 avoids the challenge of approximating lnθ when θ → 0. Assumption
2 ensures that all non-zero probabilities fulfill the MNL relationship. Assumption 3 ensures that
options with 0 probability are unattractive options. Assumptions 2 and 3 avoid to compute the
MNL relationship related to unattractive options. Thus, the assumptions exclude parts of the
search space that are not interesting for the application but may create numerical challenges.

Binary variables b = {bwr|w ∈ W, r ∈ Rw} are introduced that a value of 1 indicates an
active route, 0 otherwise. We assume the absolute value of the utility µ has an upper bound
|U |max and define continuous variables φwr ∈ [ln ϵ− |U |max, 0], w ∈ W, r ∈ Rw. For scenario w,
we select an arbitrary choice option r0 as the base option. Then, the original problem P0 can be
represented by P within a bounded error (Chen et al., 2023):

P : min
x

f(θ,x)

s.t. (2), (3), (5),
θwr ∈ [0, 1] ∀w ∈ W, r ∈ Rw, (6)
θwr ≥ bwrϵ ∀w ∈ W, r ∈ Rw, (7)
θwr ≤ bwr ∀w ∈ W, r ∈ Rw, (8)
φwr − φwr0 = µwr − µwr0 ∀w ∈ W, ∀r ∈ Rw/r0, (9)
bwr = 1 → φwr = ln θwr ∀w ∈ W, ∀r ∈ Rw, (10)
bwr = 0 → φwr < ln ϵ ∀w ∈ W, ∀r ∈ Rw, (11)
bwr ∈ {0, 1}, ln ϵ− |U |max ≤ φwr ≤ 0 ∀w ∈ W, ∀r ∈ Rw. (12)

Constraints (6), (7), and (8) restrict the ranges of θwr. They indicate that θwr is non-zero
by bwr = 1 and zero by bwr = 0. Constraints (9) and (10) ensure assumption 2 holds when
probabilities of two options are greater than ϵ and make natural log function starts from ln ϵ.
Constraints (11) ensure assumption 3 holds. Constraints (12) define ranges of variables.

The nonlinearity in the reformulation comes from the service level function in constraint (2)
and a concave nonlinear equality constraint (10) (its negative is convex). For simplicity, we
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introduce the equivalent form of problem P:

P̃ :min f(θ,x), (13)
s.t. g(x, s,θ) = 0 ∀g ∈ GP, (14)

x, s,µ,θ,b ∈ ΛP, (15)

where GP is the set containing all nonlinear constraint functions in P and Λ = {Bx+Cs+Dµ+
Eθ + Fb ≤ 0} is the solution space by all linear constraints. B,C,D, E, and F are coefficients
matrices. We assume f and g are convex and once continuously differentiable. Note that the
problem is a nonconvex MINLP due to the nonlinear equality constraints (14). Our approach
for solving P̃ builds upon the outer approximation approach (Duran & Grossmann, 1986).

2.2 Outer-inner Approximation method

We introduce projection P(bk) of P by fixing b to one assignment bk and determining the optimal
x variables for this assignment. Rw

k denotes the active options of scenario w for assignment bk.
A feasible projection can provide an upper bound to P. The projection is given by

P(bk) : min
x

f(θ,x)

s.t. (2), (3), (5),
θwr ∈ [ϵ, 1] ∀w ∈ W, r ∈ Rw

k , (16)
θwr = 0 ∀w ∈ W, r ∈ Rw/Rw

k , (17)
φwr − φwr0 = µwr − µwr0 ∀w ∈ W, ∀r ∈ Rw

k /r0, (18)
φwr = ln θwr ∀w ∈ W, ∀r ∈ Rw

k , (19)
ln ϵ− |U |max ≤ φwr < ln ϵ ∀w ∈ W, ∀r ∈ Rw/Rw

k . (20)

However, the solution of P(bk) is not always feasible. We need an approach to exclude infeasible
assignment bk. We define the feasibility problem F(bk) for infeasible P(bk):

F(bk) : min
x

∑
g∈GP (bk)

|g(x, s,θ)| (21)

s.t. x, s,µ,θ ∈ ΛP(bk). (22)

Fletcher & Leyffer (1994) proved that the outer linearization at the solution zk = (xk, sk,θk)
T of

F(bk) can exclude bk in ΛP when g(zk) > 0. As the functions g are convex we can use a piecewise
linear approximation to outer approximate the equality constraint in the opposite direction, i.e.,
g(z) ≥ 0. Thus, we can use classical gradient cuts for outer approximate g(z) ≤ 0 and a piecewise
linear approximation to outer approximate g(z) ≥ 0. We prove that the piece-wise linearization
(PWL) at the solution of F(bk) can exclude bk in ΛP when g(zk) < 0. Therefore, we can define
the master program Mi (for iteration i) containing outer linearizations (gradient cuts) and inner
PWL for g(z) = 0. The master problem is given by

Mi : min
x

η (23)

s.t. η < UBD (24)

η ≥ fj (xj ,θj) + (∇fj)
T
(
(x,θ)T − (xj ,θj)

T
)

∀j ∈ T i, (25)

0 ≥ gj (xj ,θj) +
[
∇gj

]T
(z− zj) ∀g ∈ G, ∀j ∈ T i, (26)

0 ≤ z− PWL(g(zl), g(zj), g(zr)) ∀g ∈ G, ∀j ∈ T i, (27)
x, s,µ,θ,b ∈ ΛP, (28)

and the solution provides a lower bound to the optimal objective value of P. Set T i = {j|j <= i}
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denotes previous and current iterations. z = (x, s,θ)T denotes nonlinear-related variables. Given
b0, i = 0, UBD= inf as initializations, the proposed algorithm can be summarized as follows:
1) Solve P(bi) or the feasibility problem F(bi) if P(bi) is infeasible, and let the solution be
zi = (xi, si,θi)

T . 2) Apply outer and inner PWL linearizations at zi where zl and zr are the
left and right boundaries of z. 3) If P(bi) is feasible and fi <UBD, record the current best
solution z∗ = zi and update UBD as fi. 4) Solve the current relaxation Mi which produces a
new assignment of options bi+1. 5) Move to next iteration i+ 1 until Mi is infeasible.

3 Results
We conduct a preliminary case study of the network expansion problem to validate our proposed
methodology. On the supply side, this problem aims to determine the extent of capacity expan-
sion required for each road link. On the demand side, the travel patterns (choices) will change ac-
cordingly with expansion decisions. The objective is to reduce overall congestion by optimally ex-
panding the capacities on certain links. We used the classical SiouxFalls network and OD demand
data in https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls.

For detailed settings, we treat OD pair w with travel demand dw as one scenario and its
available routes Rw as travel choice options. Set E contains all edges in the network. Decision
variables {xe|xe ≤ xe ≤ xe, ∀e ∈ E} denotes the adjusted capacities for all edges where, for
edge e, xe is the current road capacity and xe is the maximum adjustable capacity. We set
xe = 1.5xe,∀e ∈ E. Objective (1) is specified as f1(θ) + f2(x) in this problem. f1(θ) =∑

w

∑
r∈Rw lrdwθ

wr represents the total travel time within the system as the cost of customer
behavior. lr denotes the travel time associated with route r. f2(x) = 0.005

∑
e∈E(xe − xe)

quantifies the weighted cost of the operation decision (i.e., capacity expansion). We use BPR
function as the service level (i.e., travel time) function and µwr = −1.5lr, ∀w ∈ W, r ∈ Rw for
specified constraints (2) and (3). We tested on OD pairs {(i, j)|i < j, i, j <= 10} for validation.

Table 1 shows the results by extending the capacities of 8 edges while retaining the other 68
edges. The problem P is solved in 17.96s with an i9-12900H CPU. The total travel time f1(θ)
decreases from 228,828 s to 222,240 s after the expansion (savings of 6587.7). The weighted
expansion cost f2(x) is 127.28, significantly lower than savings. In the conference presentation,
we will also show the case study of service frequency/pricing for multimodal mobility systems.

Table 1 – The results of edges’ capacities in the network

Edge xe/xe Edge xe/xe Edge xe/xe
(2, 6) 150.00% (5, 9) 150.00% (9, 10) 148.49%
(4, 5) 107.62% (6, 8) 150.00% (16, 10) 150.00%
(5, 6) 150.00% (8, 16) 150.00% Remaning 68 edges 100.00%
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