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1 INTRODUCTION

A ride-sharing system allows drivers and riders with overlapping trips to travel together and
share costs. In addition to economic incentives for both participants, ride-sharing holds great
potential to alleviate traffic congestion and reduce emissions. At the core of a ride-sharing system
is the matching problem. Different from previous studies that propose matching mechanisms to
maximize total trip utilities (Tafreshian et al., 2020), this study takes the perspective of the
traffic manager who aims to minimize system-wise traffic congestion. Hence, it is also different
from existing traffic equilibrium models that generalize ride-sharing behaviors (Di et al., 2017, Li
et al., 2020). The proposed matching scheme is largely inspired by several recent studies (Zhang
& Nie, 2018, Chen et al., 2020, Farahani et al., 2021), which show that the traffic network can
deviate from user equilibrium (UE) and closely approach system optimum (SO) by rerouting a
small fraction of travelers. Instead of assuming fully controllable autonomous vehicles (Zhang
& Nie, 2018, Chen et al., 2020) or arbitrarily introducing intermediate checkpoints to trips
(Farahani et al., 2021), we consider travelers detoured from their UE paths as ride-sharing drivers.
Accordingly, the detours hold particular meanings of picking up riders and trips after dropping
off riders.

In this study, we consider three groups of travelers: ride-sharing riders, ride-sharing drivers,
and solo drivers. The problem is formulated as a Stackelberg game (Stackelberg, 1952), or
mathematically, a mathematical program with equilibrium constraints (MPEC) (Dempe, 2003).
Specifically, the traffic manager is considered the leader, who performs ride-matching to minimize
total traffic congestion while producing reasonable matching outcomes. The leader’s decision
essentially manipulates the demand pattern of travelers, or the follower, whose routing behaviors
are described by a static traffic equilibrium. The key advantage of this formulation over existing
ride-sharing traffic equilibrium models (Di et al., 2017, Li et al., 2020) is that it decomposes
the matching and routing problems through the bi-level framework and thus largely reduces the
modeling complexity. Furthermore, we show that the upper-level ride-matching problem can
be reformulated as an assignment problem over a hyper-network with link costs specified using
the equilibrium sensitivities derived from the lower-level given current solution. Therefore, the
subproblems at both levels can be solved using classic algorithms for static traffic assignment.
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This study contributes to the literature from several aspects. First, we propose a novel traffic
management strategy via ride-sharing and explore its potential to push the system from UE
toward SO. Secondly, we present a simpler formulation for the ride-sharing traffic equilibrium,
which can be easily extended to consider different incentives for riders and drivers. Last but not
least, we develop a solution approach that decomposes and reformulate the original MPEC into
two network assignment problems that can be solved efficiently with existing solution algorithms.

2 METHODOLOGY

2.1 Preliminaries

Consider a congestible traffic network denoted by G(N,A), where N is the set of nodes and A
is the set of links. The set of origins and destinations are respectively presented by P ⊆ N
and Q ⊆ N , and we define W ⊆ P × Q as the set of origin-destination (OD) pairs. Hereafter,
we will use w and (p, q) ∈ W interchangeably to refer to an OD pair. The demand vector is
defined as d = (dw, w ∈ W )⊤, where dw denotes the total travel demand OD pair w ∈ W .
We use rpq (rw) to denote a path between w = (p, q) and let Rw (Rpq) be the set of all paths
between w. Accordingly, R = ∪w∈WRw gives the set of all paths of OD pairs in W . The
traffic flow on path rw ∈ Rw is denoted by fr,w (fr,pq) and thus the path flow vector is given
by f = (fr,w, r ∈ Rw, w ∈ W )⊤. Similarly, we use sa to denote the traffic flow on link a ∈ A,
thus the link flow vector is x = (sa, a ∈ A)⊤. The relationship between link and path flows is
represented by the link-path incidence matrix ∆ ∈ 0, 1|A|×|R| that yields x = ∆f . Besides, we use
the OD-path incidence matrix Γ ∈ {0, 1}|W |×|R| to present the path flow conservation d = Γf .
Therefore, the set of feasible path and link flows are respectively written as

Ωf (d) = {f | d = Γf , f ≥ 0} (1)
Ωx(d) = {x | x = ∆f ,d = Γf , f ≥ 0} (2)

Assume the link cost functions t = (ta, a ∈ A) are separable, i.e., the link travel time only
depends on its flow. Then, when all travelers selfishly choose paths to minimize their own travel
time, the link flow pattern would converge to the well-known Wardrop’s user equilibrium (UE),
which is equivalent to the solution to the following VI problem (Dafermos, 1980):

t(x∗)⊤(x− x∗) ≥ 0,x ∈ Ωx, (3)

where x∗ denotes the equilibrium link flows.

2.2 Formulation

We consider three traveler groups and differentiate their variables with superscripts: c for ride-
sharing riders, v for ride-sharing drivers, and s for solo drivers. Particularly, we assume these
groups are independent and ride-sharing drivers may or may not serve ride-sharing trips. Further,
we assume each rider is served by only one driver, while drivers may serve multiple riders before
reaching their destinations. However, each driver can only serve one rider at a time. Therefore,
ride-sharing drivers have four types of trips: i) regular trips between their OD pairs w ∈ W v

without serving any riders, ii) pick-up trips from their origin p ∈ P v or the last rider’s destination
q ∈ Qc to the next rider’s origin p ∈ P c, iii) shared trips between the rider’s OD pair w ∈ W c,
and iv) drop-off trips from the last rider’s destination q ∈ Qc to their own destination q ∈ Qv.
On the other hand, solo drivers travel between their original OD pairs w ∈ W s. Accordingly,
these trips lead to a full set of OD pairs as W̃ = W v ∪ (P v ×P c)∪W c ∪ (Qc ×Qv)∪ (Qc ×P c).

The ride-matching decision made by the traffic manager is represented by a demand seg-
mentation matrix λ ∈ Λ := [0, 1]|W̃ |×|W v |, where each element λw̃,w denotes the fraction of
ride-sharing drivers traveling between OD pair w ∈ W v serving ride-sharing trips with OD pair
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w̃ ∈ W̃ . Accordingly, all types of trips performed by ride-sharing drivers can be represented by
a transformed demand vector λdv with additional flow conservation constraints. We consider
that ride-sharing drivers choose the shortest paths to deliver riders and complete their own trips.
Therefore, the resulting traffic flow pattern can be derived as UE with the total demand vector
d̃ = M(λdv)+ds, where M ∈ {0, 1}|W s||W̃ | consolidate virtual OD pairs to the physical network.
For notation simplicity, we assume the number of physical OD pairs is the same as the number
of OD pairs for solo drivers.

The Stackelberg game between the traffic manager and travelers is formulated as the following
mathematical program with equilibrium constraint (MPEC):

min
λ∈Λ

T (λ) = t(x̃∗)⊤x̃∗ + ρT d̄c, (4a)

s.t. λpq,pq +
∑
m∈P c

λpm,pq = 1, (p, q) ∈ W v, (4b)

λpm,pq +
∑
i∈Qc

λim,pq =
∑
j∈Qc

λmj,pq, ∀m ∈ P c, (p, q) ∈ W v, (4c)

∑
i∈P c

λim,pq =
∑
j∈P c

λmj,pq + λmq,pq, ∀m ∈ Qc, (p, q) ∈ W v, (4d)

d̄cw =
∑

w′∈W v

λw,w′dvw′ − dcw ≥ 0, ∀w ∈ W c, (4e)

d̃ = M(λd) + ds, (4f)

t(x̃∗)T (x̃− x̃∗) ≥ 0, ∀x̃ ∈ Ωx(d̃). (4g)

The objective function T (λ) consists of two terms: t(x̃∗)⊤x̃∗ gives the total travel time over the
network and ρT d̄c defines a penalty on unsatisfactory ride-matching. As per Constraint (4e), all
ride-sharing riders are served though some ride-sharing drivers are detoured without serving any
riders. These trips thus lack incentives and induce a penalty specified by the parameter ρ ∈ R|W c|

+ .
Constraint (4b) dictates the conservation of departure flow from each ride-sharing driver’s origin.
Constraints (4c) and (4d) establish the flow conservation among the pick-up, shared, and drop-off
trips for each riders’ origin and destination, respectively. Finally, Constraint (4g) presents the
equilibrium constraint under the transformed demand d̃.

2.3 Solution approach

While MPEC is challenging to solve in general (Dempe, 2003), Problem (4) naturally fits into
a bi-level solution procedure. At the upper level, the traffic manager updates the demand
segmentation matrix λ based on the current equilibrium traffic pattern x̃∗. The updated ride-
matching decision then leads to a new transformed demand d̃ and further induces a shift in
traffic equilibrium at the lower level. Note the lower-level problem is simply a static traffic
assignment problem and can be solved efficiently via existing algorithms, e.g., the Frank-Wolfe
algorithm (Frank et al., 1956). The upper-level problem, however, is challenging to solve in
general because of the high dimension of λ. A toy network with two driver OD pairs and
two rider OD pars may end up with a matrix λ of dimension 16 × 2. Nevertheless, we note
that the upper-level problem can be reformulated as another assignment problem over a hyper-
network illustrated in Figure 1. In the hyper-network, the set of nodes consists of all origins
and destinations of drivers and riders, while the links denote feasible trips. The OD pairs
in the hyper-network coincide with ride-sharing drivers’ OD pairs, and each path denotes a
feasible trip sequence. Each element in λ then represents the link flow corresponding to each OD
pair. Consequently, the upper-level problem turns into a network assignment problem with unit
demand and side constraints corresponding to Eq. (4e).

The remaining question is how to connect the two levels and solve the upper-level problem
in anticipation of the change in the lower-level traffic equilibrium. Note that link costs in the
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Figure 1 – Example of a hyper-network with one driver OD pair and two rider OD pairs

hyper-network are essentially the shortest path travel times that are readily available from the
lower-level solution. We then implement the sensitivity-based approach developed by Lu (2008)
to approximate the derivative of shortest path travel time with respect to demand variation. It
then enables us to construct a linear approximation of the link costs in the hyper-network.

In the full paper, we will present the reformulated upper-level problem, detail the solution
approach, and report the numerical experiments on toy and Sioux Falls networks. Discussions
on the incentives for participating in ride-sharing will also be included.
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