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1     INTRODUCTION 
Traffic forecasting using Deep Learning has been a remarkably active and innovative research field 

during the last decades (Vlahogianni et al., 2014; Yin et al., 2021). However, there are still several 

barriers to real-world, large-scale implementation of Deep Learning forecasting models, including 

their data requirements, limited explainability and low efficiency (Wang et al., 2019; Fafoutellis and 

Vlahogianni, 2023). In this paper, we propose a novel theory-driven framework that is based on a 

Granger causality-inspired feature selection method and a multitask LSTM to jointly predict two 

traffic variables. At the core of our methodology, there is a novel traffic flow theory-informed 

multitask neural network, which is used for the joint short-term forecasting of two traffic variables. 

For training the model, we propose a custom-made, theory-aware loss function, which incorporates 

the distance of the emerging multivariate forecast (pairs of traffic variables) from the fundamental 

diagram of the corresponding location. To enhance the model’s performance and interpretability, 

network-level traffic information is selected from the most relevant locations, specific to each target 

location, using the Neural Granger adaptation of classic Granger causality.  

The proposed approach is inspired by the concept of Physics- (or Theory-) Informed Deep Learning 

incorporates the advantages of the two main modeling approaches, namely analytical or physics-

based and data-driven, in order to achieve better generalizability and higher accuracy (Di et al., 

2023). Specifically, it can be deployed when a data-driven model includes, as input or output, one 

or more variables for which an analytical/mathematical relation is known from the corresponding 

scientific field. This relation is usually incorporated into the model’s loss function or is used in an 

independent module and aims to adjust highly erroneous, unreasonable predictions of the model, 

towards what is “in theory” expected. In this case, the model’s outcomes are assessed based on their 

distance from the observed (actual) outcome and the one expected by the relevant physics law 

(Usama et al., 2022). 

 

2     METHODOLOGY 
 

2.1  Neural Granger Causality 
In this work, we exploit the concept of Neural Granger causality for the causal feature selection task, 

which is a Deep Learning adaptation of the classic Granger causality test, proposed by (Tank et al., 

2021). The main advantage of this approach is that it overcomes the shortcomings of the classic one 

and, especially, the linear relations assumption, by using a neural network to simulate the relation 
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between input and output variables. In our implementation, we use an LSTM network, which is more 

suitable for time series data, however, other architectures can be used as well. 

The main idea behind Neural Granger is to train a neural network to estimate the target time series 

values getting, initially, as input all the other time series and, gradually, as the training process 

progresses, assign zero input weights to those time series that are not causally related with the target, 

using the following loss function: 
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2.2  Traffic Flow Theory-Informed Loss Function 
For the purposes of this work, we propose the Traffic Flow Theory-Informed loss function (TFTI 

loss), which combines the mean value of the MSEs’ square root of both individual variables, which 

is proportional to the Euclidean distance of the predicted and the actual points, with the distance of 

the prediction from the closest point on the estimated fundamental diagram. Let 𝑦̂𝑖 = (𝑣𝑖, 𝑠̂𝑖) the 

prediction for a real pair 𝑦𝑖 = (𝑣𝑖 , 𝑠𝑖)  and 𝑔𝑗 = (𝑣𝑗
𝑒 , 𝑠𝑗

𝑒)  the closest point on the estimated 

fundamental graph which characterizes the location of interest, TFTI loss is defined as follows:  

𝑇𝐹𝑇𝐼 𝑙𝑜𝑠𝑠 =  𝑎 ∗
1

2
√[𝑀𝑆𝐸𝑣 + 𝑀𝑆𝐸𝑠] + (1 − 𝑎) ∗ 𝑑(𝑦̂𝑖 , 𝑔𝑗)          (1) 

where 𝑀𝑆𝐸𝑣 𝑀𝑆𝐸𝑠 are the mean square error of the predictions of volume and speed respectively, 

𝑑(𝑦̂𝑖 , 𝑔𝑗) is the Euclidean distance of the predicted pairs and the closest point of the fundamental 

diagram to the corresponding actual value. The factor 𝑎 controls the significance of the second factor 

over the first, 𝑎 ∈ [0,1].  

3     IMPLEMENTATION AND RESULTS 
 

3.1  Data 
The data used in this work were derived from a database that is maintained by the Traffic 

Management Center of the Region of Attica. The database includes daily measurements from about 

1000 loop detectors that are installed in the road network of the broader area of Athens. The time 

resolution of the data is 6 minutes, i.e., the sensed data are aggregated in 6-minute intervals. The 

data refer to 40 days of measurements, between March 20th and April 30th of 2023. For the sake of 

brevity, 4 locations that lie close to the city center and significant economic/business areas were 

selected as the target locations. 

To use the TFTI loss, one should first produce a functional form of the fundamental diagram by 

fitting a curve to the target location’s measurements and develop a multitask prediction model, as 

both traffic volume and speed variables are considered in the loss function. More specifically, for 

the fundamental diagram of all locations (not only target locations), first, the (traffic volume, speed) 

pair measurements of each location are separated into congested and uncongested using the k-Means 

clustering algorithm. Then, a second-order polynomial curve was fitted at each cluster of each 

location, so, at each location, we have a fundamental diagram that consists of two curves (two-

variate, discontinuous diagram). 



P. Fafoutellis, E. I. Vlahogianni   3 

 

 

TRC-30  Original abstract submittal 

3.2  Modeling Setup 
The experiment aims to evaluate the effectiveness of the TFTI loss function in reducing the overall 

forecasting error (for both variables) but also increasing the trustworthiness of the model. The two 

approaches compared are training the model with (i)simple MSE error and (ii)proposed TFTI loss 

function, with parameter a=0.7, which corresponds to 70% weight for the first term (MSE) and 30% 

for the second (distance from the fundamental diagram). To have a valid and fair comparison, the 

two models that are developed for each target location (MSE and TFTI loss) are identical, except 

for the loss function: they have exactly the same architecture. 

 

3.3  Detected Causalities 
After applying the Neural Granger method on the available dataset, the locations that Granger-cause 

the target locations emerged. The average number of detected locations was 6.6 out of the 420 

locations, which indicates that the dimensionality of the input space for each forecasting model can 

be vastly decreased, without, however, losing significant information. The locations that were found 

to Granger-cause the first 4 of the target locations are presented in Figure 1. 

  
 

 

Figure 1 - Emerging locations (blue circle) that Granger-cause the target locations (red 

diamond) 

 

3.4  Forecasting Results 
In Table 1, the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) of 

the predictions are presented for the two loss functions overall and for each variable separately for 

the four indicative locations. 

Table 1 - Forecasting results comparison 

 MSE loss TFTI loss MSE loss TFTI loss 

Location MS106 MS230 

Volume MAPE 6.8% 9.1% 9.2% 10.5% 
Speed MAPE 17.3% 6.4% 23.0% 9.4% 

Overall MAPE 12.0% 7.8% 15.6% 9.9% 

Location MS443 MS634 

Volume MAPE 9.6% 13.0% 8.6% 9.7% 
Speed MAPE 17.0% 9.3% 11.1% 6.7% 

Overall MAPE 13.3% 11.1% 9.8% 8.2% 

 

To further examine the trustworthiness of the models, we provide the fundamental diagrams 

emerging from the predictions. In Figure 2, the diagrams of an indicative location are provided. 
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MSE loss TFTI loss 

  

Figure 2 - Emerging predicted fundamental diagrams versus actual for MSE loss (left) and 

TFTI loss (right) 

 

4     CONCLUSIONS 
In this work, we proposed a holistic approach for actionable and trustworthy short-term traffic 

forecasting consisting of a causal Granger LSTM network and a multitask LSTM network, enhanced 

with the novel TFTI loss function. Findings showed that using the concept of Neural Granger for 

detecting causal features, the dimensionality of the input space can be significantly reduced. 

Moreover, the use of the TFTI loss was found to increase the overall accuracy of the two variables, 

as well as the trustworthiness of the predictions. 

In the future, we aim to apply the proposed methodology to road networks of other cities, to examine 

whether similar results will emerge in terms of the forecasting performance and the detection of 

causal relations and associated traffic patterns. Furthermore, we will assess the transferability of the 

already trained models. 
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