
Enhancing Origin-Destination Matrix estimation using
measurements from Unmanned Aerial Vehicles

Y. Englezoua∗, S. Timotheoua and C. G. Panayiotoua

a KIOS Research and Innovation Center of Excellence & the Department of Electrical and
Computer Engineering, University of Cyprus, Nicosia, Cyprus

englezou.yiolanda@ucy.ac.cy, timotheou.stelios@ucy.ac.cy, christosp@ucy.ac.cy
∗ Corresponding author

Extended abstract submitted for presentation at the Conference in Emerging Technologies in
Transportation Systems (TRC-30)

September 02-03, 2024, Crete, Greece

August 9, 2024

Keywords: origin-destination demand, path demand, cell transmission model, traffic flow dy-
namics, optimisation.

1 INTRODUCTION
Efficiently estimating the origin-destination (OD) matrix in transportation is essential. Two key
variants of this problem are considered: the static and the dynamic (or time-varying). The static
variant seeks average OD demands over a fixed period using aggregated link counts collected over
a longer duration. In contrast, the dynamic variant utilizes time-varying traffic data to estimate
time-dependent OD matrices.

Stationary sensors, like loop detectors and cameras, are commonly used to gather traffic flow
data at monitored links and provide information for inference at unmonitored links. However,
their effectiveness is hindered by sparse deployment, high installation costs (Darwish & Bakar,
2015) and the inability to capture traffic data on non-equipped links (Coifman, 2014). In con-
trast, mobile sensors offer broader spatiotemporal coverage but come with drawbacks such as
sparse data, unpredictable routes, difficulties in correlating with traffic volumes (Kurzhanskiy &
Varaiya, 2015), and privacy concerns (Llorca et al., 2010).

Unmanned Aerial Vehicles (UAVs) is a promising technology for various transportation ap-
plications. Research on traffic monitoring with UAVs focuses on remote capture of traffic data
from above the ground using multiple sensors (Barmpounakis et al., 2016). This collected data
supports tasks such as surveillance, congestion management, traffic signal optimization, highway
infrastructure management, and traffic parameter inference (Pham et al., 2020, Barmpounakis
& Geroliminis, 2020).

In this work, we aim to estimate a static OD matrix over a specified time period using density
data gathered from either stationary sensors or a swarm of UAVs. We propose efficient method-
ologies to address both free-flow and congested traffic conditions. Our approach integrates the
path-based cell transmission model (CTM) within an optimization framework for OD estimation,
leveraging disaggregated measurements to minimize discrepancies between the model and actual
data. We specifically explore the use of UAV measurements for OD matrix estimation, enabling
comprehensive data collection across all network links at different time intervals.

2 METHODOLOGY
2.1 Proposed OD matrix estimation problem
We split the time period of interest T into K time-steps of duration Ts [hours], and define
T + = {1, . . . ,K} and T = {0, . . . ,K − 1}, such that K = T/Ts. Ts is used to characterize
both the periodicity of measurements and the discrete time-step of the chosen traffic model. For
the evolution of traffic, we consider a state-space model consisting of a nonlinear traffic and an
observation model described by

xk+1 = f(xk,u) + ϵk,

yk+1 = Hkxk+1 + ωk, k ∈ T , (1)
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where xk ∈ RM×1 is the unobserved state vector, yk ∈ RC×1 is the measurement vector,
u ∈ RQ×1 is the input vector and x0 is the unknown initial state of the process. Vector yk

denotes observed traffic variables. In addition, f(·, ·) is a nonlinear mapping describing the
traffic dynamics, e.g. as part of the cell transmission model, and Hk ∈ RC×M is the ob-
servation matrix. We assume independent Gaussian errors for the model and measurement
equations, ϵk ∼ N(0(M+L)×1,Σϵ,k) and ωk ∼ N(0Ck×1,Σω,k), and Σϵ,k ∈ R(M+L)×(M+L) and
Σω,k ∈ RCt×(M+L) are the model and measurement error matrices, respectively.

Given Model (1) and the obtained measurements, we aim to select u, such that the states of
the model are as close as possible to the measurements. This can be formulated as a nonconvex
constrained least squares problem of the form

min
∑
k∈T

||yk+1 −Hk+1xk+1||2[Σω,k]−1

s.t. xk+1 = f(xk,u) + ϵk, k ∈ T
xk ≥ 0, k ∈ T , u ≥ 0, (2)

where xk and u are the optimisation variables. By obtaining u through the solution of Problem
(2), the demand of each OD pair can be simply obtained by∑

p∈Sw

up = dw, ∀w ∈ W. (3)

We assume two types of data may be available from two different sensing technologies; data
collected from fixed location sensors (stationary data) and data collected by UAVs. The main
difference is that when only fixed location sensor data are collected the set of measured links
remains fixed ∀k ∈ T , Ck = C and |Ck| = |C| with observed traffic counts yi(k), i ∈ C, whereas if
only UAV data are collected the set of measured links, Ck, differs at each time-step, as well as
the observed traffic counts, yi(k), with i ∈ Ck, k ∈ T .

Consider U UAVs flying in the network under study, with U the set of all UAVs such that U =
|U|. For simplicity we assume that all UAVs have identical flying and sensing capabilities. Each
UAV traverses between neighbouring nodes with constant speed vUAV [m/s] and the required time
to traverse between neighbouring nodes is given by TU = Dnn′/vUAV [s], where Dnn′ denotes
the distance between nodes n ∈ N and n′ ∈ N . In addition assume that each UAV records
measurements only for the hovering time, tH [s], above a node, whereas no measurements are
recorded during TU .

2.2 Macroscopic Traffic Model
A path-based CTM allows us to keep track of path-based flows and cell densities and any strong
assumptions on split ratios used in previous works in the OD matrix estimation research, are no
longer needed. The use of the path-based CTM enables the estimation of the path demands and
in consequence the estimation of OD demands, dw(k) through Equation (3).

The per path density of cell i, is:

ρi,p(k + 1) = ρi,p(k) +
Ts

li

[
φin
i,p(k)− hi(k)φ

out
i,p (k)

]
, (4)

∀p ∈ Pi,∀i ∈ L. It follows from the definitions that if p /∈ Pi then ρi,p(k) = 0, ∀k ∈ T +.
Based on the characterisation of the boundary connection of the cells we can define the inflow
and outflow, which are calculated according to the demand and supply paradigm. For further
information regarding the path-based CTM, see Englezou et al. (2024).

2.3 Problem-specific dynamics
For the path-based CTM we have the state vector xk = [ρ(k), ρ̄(k)]T, such that ρ(k) =
[ρ1(k), . . . , ρM (k)]T is the per path density of each cell i ∈ R, and every path p ∈ Pi at time-step
k. In addition, ρ̄(k) = [ρ̄1(k), . . . , ρ̄L(k)]

T is the density of each cell i in the network at time-step
k. The input vector u = [u1, . . . , uQ]

T, denotes the inflow from path p ∈ Pi in cell i and time-step
k (Englezou et al., 2024). The Ck-vector of observations yk = [ρ̄b1(k), . . . , ρ̄bCt

(k)]T, Ck ≤ L,
Ck = {b1, . . . , bCk

}, denotes the density taken on measured links at time-step k, related to the
state vector through Hk.

Practically the difference in the proposed methodology when using the two different types of
data is reflected in the definition of the matrix of explanatory variables Hk. When static data
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Percentage of measurements 100% 80% 60% 40%
Measured Links (C) 19 15 11 7
pCTM-OD 6.62 7.95 14.70 1.47×104

Table 1 – Average RMSE for different measurement percentage using fixed location sensor data.

tH(s) Ts = 10 2Ts 3Ts 4Ts 5Ts 6Ts

Scenario S1 7.26 7.71 8.16 9.01 9.23 9.32
Scenario S2 8.55 8.79 9.13 9.26 9.35 9.56
Scenario S3 7.12 7.21 7.52 8.31 8.53 8.92
Scenario S4 8.10 8.23 8.80 9.13 9.45 9.87
Scenario S5 6.74 7.32 7.35 7.39 7.38 7.69
Scenario S6 7.61 7.87 8.29 8.83 9.04 9.21

Table 2 – Average RMSE for the six UAV scenarios using UAV-based data.

are used to estimate the OD matrix, we have that Ck = C ∀k ∈ T and the C × (M +L) matrix
Hk remains fixed for all k ∈ T , such that H = Hk. However when data collected by UAVs are
used for OD matrix estimation, the Ck × (M +L) matrix Hk differs both in its elements and its
size at each time-step k. As a consequence, Problem (2) differs in terms of the objective function
to be minimised. We will refer to the proposed OD matrix estimation approach as pCTM-OD.

3 RESULTS
We consider an abstraction of the road network in the city of Leicester, UK which lies to the
south-east of the center of Leicester and is bounded by Waterloo Way, Lancaster Road, Granville
Road and London Road. The parameters considered are: W = 9 OD pairs, Q = 10 pre-defined
paths and L = 19 directed links. In addition, we consider the following CTM parameter values:
vf = 60 km/h, Ts = 10 s, w = 20 km/h, φmax = 1500 veh/h, ρmax = 200 veh/km; the simulation
time is consider to be T = 1 hour and each cell has length li = 0.5 km.

We consider: (i) Random partial coverage where loop detectors are randomly placed at specific
links to obtain 80%, 60% and 40% coverage of the total number of links, and (ii) Full coverage
or 100% coverage where all links are measured. In addition we consider that UAVs fly above
the road network with speed vUAV = 25 m/s. For simplicity we assume that the travel time of
the UAV to move to neighbouring nodes is constant and equal to TU = 20 s. Each UAV has
full vision of the links observed at each time-step. The following scenarios of deployed UAVs are
considered: [S1.] U = 1 with fixed trajectory, [S2.] U = 1 with random trajectory, [S3.] U = 2
with fixed trajectories, [S4.] U = 2 with random trajectories, [S5.] U = 3 with fixed trajectories
and [S6.] U = 3 with random trajectories. We consider 6 hovering times of each individual UAV:
(a) tH = Ts = 10 s, (b) tH = 2Ts, (c) tH = 3Ts, (d) tH = 4Ts, (e) tH = 5Ts, (f) tH = 6Ts.

We estimate u for the different loop detector scenarios and the six scenarios of deployed UAVs
described above, and calculate the root mean squared error: RMSE =

√
1/Q

∑Q
p=1(up − ûp)2.

Here, up is the true value of the pth unknown path demand, ûp is the pth estimated path demand
using the output of the optimisation method and Q is the total number of paths in the network
under study. Once the estimated path demand û is obtained the OD matrix can then be easily
derived using Equation (3). We run the optimisation procedure B̃ = 100 times and present the
average RMSE for each loop detector layout (Table 1) and UAV scenario (Table 2).

As shown in Table 1 decreasing the percentage of the measurements, i.e decreasing the mea-
sured links from C = 19 to C = 7, the average RMSE is increased on average three orders of
magnitude. As shown in Table 2 the estimation results remain very similar for all UAV de-
ployment scenarios. Scenario 5 (a) appears to have the lower average RMSE and Scenario 4 (f)
yields the higher average RMSE. As we increase tH the average RMSE is increased probably due
to the fact that when observing the same links for a larger time duration the UAV is not able
to visit all nodes multiple times in the total time horizon under study affecting the estimation
results. In addition as we increase the number of UAVs that hover above the road network the
ARMSE is decreased. Furthermore, assuming random trajectories for the UAVs results in higher
average RMSE compared to the results assuming fixed trajectories. A further investigation of
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Figure 1 – Boxplots of the residuals of the pCTM-OD using (a) static data, and (b) and (c)
UAV-based measurements for Scenario 2 and 5, respectively.

the RMSE obtained using pCTM-OD for different sensor layouts and deployed UAVs scenarios
is presented in Figure 1, in order to evaluate the estimation variance of each method. We select
to present results for two UAV scenarios; Scenario 2 and 5 which result in the worst and best
estimation results, respectively, compared to all six scenarios. The RMSE obtained using the
different sensor layout is rapidly increased as we decrease the number of sensors, as also shown
in Table 1 (we omit results obtained using 40% percentage of measurements as they exhibit very
large RMSE). In addition, for 100% measurements the variance of the RMSE is lower than the
results obtained using UAV measurements. As we increase the number of deployed UAVs the
mean and variance of the RMSE for the 100 different estimation procedures is decreased, as also
shown in Table 2.

4 DISCUSSION
This work investigates OD matrix estimation in the context of the path-based CTM and noisy
measurements obtained from (i) fixed location sensors and (ii) UAVs flying above the road net-
work. Towards this direction a model-based estimation approach has been formulated and has
been demonstrated the estimation advantage of using measurements obtained from UAVs com-
pared to measurements collected by fixed location sensors layouts. Estimation results show
that UAV data provide significantly better results even when the number of measurements per
time-step with the UAV swarm is smaller.
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