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1     INTRODUCTION 
 

The recursive logit (RL) model has been proposed to overcome limitations of choice set generation 

in route choice modelling (Fosgerau et al., 2013). The model treats route choice as a sequence of 

link choices in transportation networks, without the need for a choice set generation process. 

Therefore, it can be consistently applicable for estimation and prediction. The model has been 

actively discussed in transportation research areas in recent years (e.g., Zimmermann et al., 2018; 

Oyama, 2023). 

The link choice in the RL model is based on link utilities derived from link-based attributes such 

as link travel time and link length. These attributes are assumed to be link-additive: an attribute value 

for two or more links is equal to the sum of individual link attribute values, allowing link-based 

utilities to be expressed recursively. However, the representation of link-additive values is not 

straightforward for some of the key attributes describing route choice behavior in multimodal 

networks. The transit fare is a case in point. It is defined at the level of path and different from the 

simple sum of its constituent stages and varies with its composition in intermodal trips. Excluding 

the path-based attributes limit policy discussion of the results of the RL model in terms of willingness 

to pay and value of travel time savings. Moreover, considering that intermodal trips are becoming 

more active with emergence of smart mobility services such as ride-hailing, demand-responsive 

transportation, and shared mobility along with mobility-as-a-service (MaaS), this restriction will 

significantly limit the applicability of the RL model. 

The purpose of this study is therefore to propose an extended RL model integrating the effects 

of path-based attributes on route choice behavior. The Moore-Penrose pseudoinverse method 

(Moore, 1920; Penrose, 1955) is considered to transform path-based attributes into link-based values. 

The applicability of the proposed model is verified through empirical analysis. We first demonstrate 

that the path attribute can be transformed into link-level values. Then, we show that the proposed 

model improves estimation and prediction results compared to the classical route choice models.  
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2     METHODLOGY 
 

In a directed connected graph, the link where a traveler 𝑛 is currently located is denoted by 𝑘. An 

RL model (Fosgerau et al., 2013) assumes that the traveler chooses the next link 𝑎 that maximizes 

the sum of instantaneous utility 𝑣𝑛(𝑎|𝑘)+𝜇휀𝑛(𝑎) of the link and the expected maximum downstream 

utility 𝑉𝑛
𝑑(𝑎) recursively defined by the Bellman equation (Equation 1): 

 

𝑉𝑛
𝑑(𝑘) = E [ max 

𝑎∈𝐴(𝑘)
(𝑣𝑛(𝑎|𝑘) + 𝑉𝑛

𝑑(𝑎) + 𝜇휀𝑛(𝑎))] (1) 

where 𝑣𝑛(𝑎|𝑘) is the deterministic term of the instantaneous utility, 휀𝑛(𝑎) is the random error term, 

and 𝜇 is the scale parameter.  

In our proposed recursive logit with path attributes (RL-PA) model, the instantaneous utility is 

defined in terms of both link-based and path-based attributes. Link-based attributes are defined for 

each link and are link-additive, while path-based attributes cannot be directly incorporated into the 

instantaneous utility function and need to be transformed into link attributes. Assume that a path-

based attribute is transformed into a new link attribute 𝑥𝑞
𝑙 (𝑘) which holds the link-additivity. Then 

the instantaneous utility function is defined as Equation 2: 

𝑣𝑛(𝑘) = ∑ 𝛽𝑚𝑥𝑚(𝑘)

𝑚

+ ∑ 𝛽𝑞𝑥𝑞
𝑙 (𝑘)

𝑞

 (2) 

where 𝑥𝑚(𝑘) is the 𝑚th  link-based attribute of link 𝑘 , 𝑥𝑞
𝑙 (𝑘) is the 𝑞th  transformed path-based 

attribute 𝑥𝑞
𝑝

, and 𝛽𝑚 and  𝛽𝑞 are coefficients. The transformation of 𝑥𝑞
𝑝
 is expressed as follows: 

𝑥𝑞
𝑝(𝜎) = ∑ 𝛿𝜎𝑘

𝑘

𝑥𝑞
𝑙 (𝑘), 𝑓𝑜𝑟 ∀ 𝜎, 𝑘 (3) 

where 𝛿𝜎𝑘 is a binary variable that equals one if 𝑘 ∈ 𝜎 and zero otherwise. The exact solution for 

𝑥𝑞
𝑙  generally does not exist because the number of unknowns does not match the number of equations. 

Therefore, we formulate an approximation to solve it.  

min ∥ 𝐗𝐪
𝐩

− 𝚫𝐗𝐪
𝐥 ∥                                                                  (4) 

where 𝐗𝐪
𝐩

= [𝑥𝑞
𝑝

(𝜎1) ⋯ 𝑥𝑞
𝑝

(𝜎𝑃)]
T

, 𝐗𝐪
𝐥 = [𝑥𝑞

𝑙 (𝑘1) ⋯ 𝑥𝑞
𝑙 (𝑘𝐿)]

T
, and 𝚫 = [𝛿𝜎𝑖𝑘𝑗

]
1≤𝑖≤𝑃,1≤𝑗≤𝐿

. 

𝑃 and 𝐿 are the number of observed paths and links. Note that ∥ ⋯ ∥ indicates the Euclidean norm.  

 This study applies the Moore-Penrose Pseudoinverse (Moore, 1920; Penrose, 1955) method 

to obtain the optimal solution for 𝐗𝐪
𝐥  in Equation 4 since 𝚫 does not have an inverse matrix.  

(𝐗𝐪
𝐥 )

∗
= 𝚫+𝐗𝐪

𝐩
 (5) 

where (𝐗𝐪
𝐥 )

∗
 is the optimal solution for 𝐗𝐪

𝐥 , and 𝚫+ is the Moore-Penrose Pseudoinverse of 𝚫.  

To further reduce the error, we also define the origin-destination specific versions of 𝑥𝑞
𝑙 (𝑘) 

and 𝐗𝐪
𝐥 , which are denoted as 𝑥𝑞

𝑙 (𝑘, 𝑜𝑑) and 𝐗𝐪
𝐥 (𝐨𝐝) = [𝑥𝑞

𝑙 (𝑘1, 𝑜𝑑) ⋯ 𝑥𝑞
𝑙 (𝑘𝐿 , 𝑜𝑑)]

T
 for origin 

𝑜 and destination 𝑑. Let 𝛿𝑜𝜎 and 𝛿𝑑𝜎 be binary variables that equal one if the path 𝜎 originates from 

the origin 𝑜 or is destined to the destination 𝑑, respectively, and zero otherwise. Also, let 𝚫𝐨 and 𝚫𝐝 

be diagonal matrices containing 𝛿𝑜𝜎𝑖
 and  𝛿𝑑𝜎𝑖

 in their 𝑖th entries, respectively. Then Equation 4 is 

specifically rewritten for origin-destination as Equation 6, and 𝐗𝐪
𝐥 (𝐨𝐝) is obtained by Equation 7. 

min ∥ 𝚫𝐨𝚫𝐝𝐗𝐪
𝐩

− 𝚫𝐨𝚫𝐝𝚫𝐗𝐪
𝐥 (𝐨𝐝) ∥   (6) 

(𝐗𝐪
𝐥 (𝐨𝐝))∗=(𝚫𝐨𝚫𝐝𝚫)+𝚫𝐨𝚫𝐝𝐗𝐪

𝐩
 (7) 

Finally, the probability of choosing a next link 𝑎 conditionally on the current link 𝑘 and the 

destination link 𝑑 (𝑃𝑛
𝑑(𝑎|𝑘)) is expressed as the multinomial logit model. 

𝑃𝑛
𝑑(𝑎|𝑘) =

𝑒
1
𝜇

(𝑣𝑛(𝑎|𝑘)+𝑉𝑛
𝑑(𝑎))

∑ 𝑒
1
𝜇

(𝑣𝑛(𝑎′|𝑘)+𝑉𝑛
𝑑(𝑎′))

𝑎′∈𝐴(𝑘)

 (8) 
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3     Results 
 

3.1  Data 
The methodology of this study was applied to a multimodal network and intermodal trip data in 

Seoul. The multimodal network comprises road, bus, and rail networks. Figure 1 shows the 

composition of data sets and procedures for the application. The intermodal trip data consists of two 

datasets. The first dataset is the National Household Travel Survey (NHTS) data, which describes 

the information of individual trip stages comprising a traveler’s trip: departure points, arrival points, 

modes, departure times, arrival times, and the order of the trip stages. Since the NHTS data do not 

include each traveler’s specific path, each trip stage of the NHTS data must be routed on a network 

to estimate the RL model. The second dataset, transit smartcard data, was used for routing transit 

(bus and rail) trip stages. Smartcard data describe transit users’ boarding station and time, alighting 

station and time, mode type, route number (for a bus trip stage), and fare for each transit trip stage. 

Although it is unable to identify NHTS responses and smartcard records made by a certain traveler, 

it is assumed that the respondents of the NHTS data are likely to follow the same paths as recorded 

in smartcard data for transit trip stages with the same departure, arrival locations and times. This 

assumption was also used by previous studies which inferred trip purposes of smartcard records 

based on their corresponding NHTS responses. While transit trip stages were routed based on 

smartcard data, road trip stages were routed on a network using the shortest path. The paths of trip 

stages were then concatenated into each single-purpose trip. 

 

3.2  Estimation Results 
We compared the proposed RL-PA model against MNL and RL models. In the proposed RL-PA 

model, travel cost is transformed into link-level values. Table 1 reveals the estimation results. First 

of all, all the parameters are statistically significant at 95% significance level, and their sign is 

consistent with our intuition. In terms of goodness-of-fit based on AIC, the proposed RL-PA model 

is superior to other models. It reveals that the proposed methodology of link-based transformation 

effectively captures effects of path-based attributes in route choice behavior in this data set. Another 

advantage of the proposed model is policy discussion. For instance, the value of travel time (VOTT) 

based on the results of RL-PA model is 18.22 ($/hour), which is higher than that based on MNL 

model (17.36 $/hour). Note that VOTT based on RL model is not available since it does not consider 

path-based travel cost.  

Based on the parameter estimates from each model, we also compare how well the models 

recover the actual routes used. In terms of three indices (RMSE, MAE, and MAPE), the proposed 

RL-PA model shows the lowest errors. It indicates that the proposed model has better prediction 

power than other models. Thus, we can conclude that the proposed RL-PA model successfully 

represents the effects of path-based attribute (travel cost) on route choice behavior. 

 

 
Figure 1 – Composition of data sets and procedures for the application 
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Table 1 – Estimation Results 

 MNL RL RL-PA 

Parameters    

Constant -2.8930 -2.4352 -2.3356 

Travel time (minutes) -0.2100 -0.1438 -0.2110 

Transfer -5.0529 -4.7638 -4.6974 

Bus link dummy - 1.0541 1.0212 

Rail link dummy - 0.4130 0.3994 

Road link dummy - 1.2972 1.2311 

Travel cost (US $*) -0.7259 - -0.6948 

Model fit    

Final LL -24.617 -20.036 -13.957 

AIC 55.234 52.072 41.913 

Model prediction    

RMSE 0.455 0.122 0.069 

MAE 0.208 0.108 0.061 

MAPE 55.40% 28.70% 15.47% 

 

4     Conclusions 
 

This study has presented the RL-PA model which enables the incorporation of path-based attributes 

into the RL models. We have proposed an efficient approach based on Moore-Penrose pseudoinverse 

method to transform path-based attributes into link-based values.  

 We have provided numerical results using empirical data. We use multimodal networks and 

observations of intermodal trips. The parameter estimates are sensible, and the proposed RL-PA 

model outperforms the RL and MNL models in terms of not only model fit but also prediction power. 

These findings reveal that our proposed method effectively extends the RL modeling framework by 

including path-based attributes.  

 Due to the limitations of space, we did not include results and discussions with link-size (LS) 

attribute. Consistent with previous findings, we found that the LS attribute plays an important role 

in the RL-PA model. We would like to present the whole results and findings at the conference.  
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