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1 INTRODUCTION

As urbanization progresses, cities increasingly grapple with traffic congestion, which impedes
economic and environmental health. Effective traffic signal control (TSC) strategies are crucial
for alleviating these impacts. Traditional methods setting fixed traffic variables, often fail to
address complex traffic patterns. In contrast, recent developments in model-free multi-agent
deep reinforcement learning (MARL) provide dynamic solutions that adapt to traffic changes,
showing potential in traffic management Wei et al. (2019), Zeng et al. (2022).

While MARL shows promise for TSC, it faces key challenges. The first one is the misalignment
between the RL agent’s immediate goal and the broader TSC objective. The primary aim of TSC
is to improve overall traffic conditions by reducing network delay or total travel time. Previous
researches Wei et al. (2019), Zeng et al. (2022) have used local intersection rewards like queue
length or pressure to optimize network performance. However, these approaches can lead to
biased results or localized optimization peaks Zhang et al. (2020).

Another challenge is the real-world applicability of these methods. Most RL-based strate-
gies Wei et al. (2019) adopt an adaptive control strategy that decides whether to change the
current phase at every short interval. Although such methods demonstrate timely and flexible
control capabilities, they currently face high transmission costs and the risk of traffic accidents,
considering real-world deployment Zeng et al. (2022).

To address the aforementioned challenges, we propose a novel RL-based strategy using the
Cross-Entropy Method (CEM) to hierarchically optimize traffic signal variables: offset and phase
split. This approach prioritizes control targets sequentially by Level of Service (LoS), starting
with offset control at the upper level, followed by phase split optimization at the lower level. In
each level, control targets are optimized sequentially, starting with the highest priority target
first, followed by the next in line. Unlike prior studies, this method integrates a global reward,
specifically network delay time, which aligns local actions with the broader traffic management
goals, thus eliminating the gap between local rewards and the ultimate goal of TSC. By control-
ling the traffic signal variables, offset and phase split, the proposed method can be seamlessly
applied to the real network. To align with existing standard transition policy for offset control
from the National Police Agency in South Korea, we regulate the amount of offset adjusted each
transition cycle.
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2 PRELIMINARY

2.1 Cross-entropy method (CEM)

The Cross-Entropy Method (CEM) is a model-free, policy-based reinforcement learning algorithm
designed for optimizing decision-making processes in both continuous and discrete action spaces.
The method involves refining a probability distribution over actions, q(a), to maximize the

expected cumulative reward expressed as J(π) = Eπ[
T∑
t
γt−1rt], where γ is the discount factor,

rt is the reward at time t, and π(a|s) is the policy dictating the action a in state s.
CEM operates by sampling action sequences from q(a), evaluating them based on their

generated rewards, and updating q(a) towards actions that yield higher rewards. This up-
date process is iteratively performed by selecting elite actions that performed best and adjust-
ing q(a) to increase the likelihood of these elite actions in future samplings, as outlined in
q′(aet |set ) = q(aet |set ) + ∆qupdate where aet and set are action and state in elite episodes, respec-
tively. The efficacy of CEM relies on a good initial distribution and is enhanced by extensive
exploration of the action space. The approach provides a practical framework for the sequential
optimization of decision variables.

3 METHODOLOGY

3.1 Framework for priority-based optimization

As mentioned earlier, both offset and phase split are subjected to priority-based optimization
(Figure 1a). Priority-based optimization assigns higher control priorities to control targets with
poorer Levels of Service (LoS), and sequentially optimizes each target one by one, according to
priority. The LoS is assessed by the average approaching delay, which is calculated by summing
the delay times of each link, weighted by the link flow, and then divided by the total flow.

(a) Framework for priority-based optimization
(b) Control target network and axises for offset
control

Figure 1 – Framework for optimization and target network. The ’number’ behind ’Axis’ is the
priority order for offset control.

3.1.1 Upper-level: offset control

As depicted in Figure 1, the control target unit for offset control is based on the Axis, with each
Axis (subarea, SA) comprising several intersections. Thus, offset control determines the offsets
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for the intersections within a control target axis. The higher control priority is assigned to the
Axis with poorer LoS. The LoS of an Axis is defined as the averaged LoS of the intersections it
contains.

According to the standard specifications for traffic signal controllers issued by the Korean
National Police Agency, the transition of offsets is restricted to a maximum of 17% and 33%
of the cycle for negative and positive direction transitions respectively, with positive direction
transitions being the default. We perform the offset control in accordance with these transition
standards, typically completing within three cycles. Offset control is performed once every hour.

3.1.2 Lower-level: phase split optimization

After the completion of the upper-level offset control, the lower-level phase split optimization is
conducted. The control target unit for phase split is the individual intersection, and priority-
based optimization is performed for each intersection based on its LoS. Phase split adjustments
are made every 15 minutes.

3.2 Markov decision process (MDP)

Offset control and phase split optimization utilize the same state and reward. In this study, the
state is defined as the average queue length over the previous time step (∆t) at the incoming
links of target and neighbor intersections, st = [q̄in,∆t, q̄

i
s,∆t, q̄

i
e,∆t, q̄

i
w,∆t]. As an exception, at the

beginning of an episode where no ∆t exists, the queue at t = 0 is taken as the state.
For the reward , we adopt the network delay time as a global reward that is the average

delay time per vehicle per kilometre, rt = −Dnetwork,∆t. The objective of TSC is to improve
the network efficiency by minimizing the average travel time or the average delay of network. In
this respect, using network delay time as a global reward will make it easier to reach the optimal
solution.

Regarding the action in offset control, it involves combining the offsets of intersections along
the same axis. For example, if there are three intersections on an axis, an action could be repre-
sented as [10, 30, 60], where each offset is adjusted in 10 units (Toffset ∈ [0, Tc]), and Tc denotes the
cycle time. For the phase split in this study, the action is the proportion of the remaining green
time to allocate, at = [propi], where i ∈ {1, ..., n}, propi ∈ {0, 5, 10, ..., 95},

∑
i

propi = 100(%).

The remaining green time is returned by subtracting the minimum green time of each phase (pi)
from the cycle length. We distribute a certain proportion of this remaining green time to each
phase constituting a cycle. These two actions are defined in a discrete action space.

4 EXPERIMENTS

4.1 Dataset, compared methods and evaluation metrics

We evaluated the proposed method using the AIMSUN simulator on a 4x4 grid intersection
network in Bucheon city, South Korea, during AM peak time from 8 to 9 a.m. on September 9,
2021.

Our approach was compared against both traditional (COSMOS (Cycle, Offset, Split Model
for Seoul)) and RL-based methods (IQN(Independent Queue Learning), and PressLight). "Ours-
offset" controls only offset under our framework, whereas "Ours" includes both offset and phase
split optimizations.

Performance metrics, detailed in Table 1, include the global ones of average delay time,
speed, queue, and # of stops. Additionally, local metrics such as space mean speed and average
approaching delay (LoS) are evaluated to assess the impacts of our method on traffic flow in
more detailed view.
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Table 1 – Numerical statistics with different evaluation metrics

Global Metrics Space Mean Speed Avg. Approaching Delay (LoS)

Delay time
(sec/km)

Speed
(km/h)

Queue
(veh)

# of stops Axis1
(W2E, E2W)

Axis2
(N2S, S2N)

Axis3
(N2S, S2N)

Axis4
(N2S, S2N)

Axis1 Axis2 Axis3 Axis4

COSMOS 198.52 17.71 1,622.54 66,523 (12.69, 15.26) (13.29, 10.46) (21.84, 6.66) (12.46, 14.65) 98.87 65.14 46.24 37.55

IQL 216.92 26.36 3,591.84 39,255 (15.77, 14.21) (15.06, 13.41) (30.19, 19.73) (14.35, 19.30) 69.33 11.37 36.35 79.09

PressLight 186.54 19.09 1,535.66 71,983 (18.81, 14.93) (12.94, 14.08) (21.38, 7.24) (14.83, 15.84) 77.62 49.81 38.77 34.36

Ours-offset 176.39 18.86 1,275.46 63,432 (18.09, 16.70) (14.96, 12.59) (22.24, 6.63) (14.28, 14.97) 68.95 49.24 39.11 37.75

Ours 162.21 20.27 1,207.46 61,363 (21.93, 17.39) (17.35, 12.60) (21.29, 8.33) (11.51, 14.57) 54.23 50.52 38.33 38.44

4.2 Performance evaluation

As detailed in Table 1, the proposed method consistently outperforms other strategies across
key global metrics, demonstrating its robustness in managing complex traffic scenarios. While
the IQL algorithm excels in average speed and number of stops, its performance in terms of
average delay time and queue length is sub-optimal. This discrepancy is particularly notable in
its management of the LoS, where it significantly enhances LoS for Axis2 and Axis3, but at the
cost of deteriorating conditions on Axis4. This indicates that while IQL can optimize specific
segments of traffic, it may do so by shifting rather than alleviating congestion.

In contrast, the proposed method achieves a more equitable balance across all axes, suggesting
a superior performance to distribute traffic management benefits more uniformly. This is achieved
by a strategic optimization that does not favor one axis over others, thus preventing the transfer
of congestion from one part of the network to another. The reduced variance in LoS across the
axes underlines the our method’s effectiveness in ensuring consistent service levels throughout
the network.

This balanced optimization is largely attributed to the incorporation of a global reward
that focuses on reducing network delay, and overall network health is a pivotal aspect of our
proposed method. This strategic approach ensures that the system is not only optimized for
immediate, localized benefits but also contribute to the systemic improvement of traffic conditions
across the entire network. Furthermore, while "Ours-offset" effectively manages offset controls,
the integration of phase split optimizations in "Ours" provides a more thorough and balanced
traffic management solution, making it ideal for managing traffic in urban settings with complex
dynamics.
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