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Summary. Electric vehicles (EVs) and the infrastructure of electric vehicle charging stations (EVCS) are emerging as
essential components of sustainable energy systems. In this context, we introduce an innovative approach that utilizes
aggregated EVCS to participate in the auxiliary market, thereby providing grid-balancing services. Our model continuously
monitors changes in EV state-of-charge (SoC) across both time and space, taking into account various factors, including
driver behavior, current SoC levels, and the associated charging/discharging costs and benefits. This approach will
enable charging station operators (CSO), in collaboration with aggregators, actively engage in the frequency containment
reserves (FCR) market. We introduce an optimization framework in conjunction with this EV model. For establishing
pricing policies with the twin aims of maximizing profits for aggregators and charging station operators (CSOs), while
also minimizing energy charging expenses for EV users. Our findings underscore the effectiveness of this pricing strategy
in achieving these dual objectives, as demonstrated through realistic simulations integrating the EV mobility and the
Electricity FCR market.

1 Introduction

The evolving landscape of transportation and energy systems is witnessing a significant transformation marked by
the growing adoption of electrical vehicles (EVs) and the expansion of charging infrastructure towards sustainable
transport (Razmjoo et al. 2022). Simultaneously, the global shift towards renewable energy sources poses
challenges due to their intermittent generation, necessitating innovative energy storage solutions to address
supply-demand imbalances (Clerjon and Perdu 2022).

In the realm of grid stability, electric vehicles equipped with Vehicle-to-Grid (V2G) technology and rapid
response capabilities emerge as key players in grid management (Ravi and Aziz 2022). The Frequency
Containment Reserves (FCR) market, operating with a response time of less than 30 seconds, emerges as a vital
component in grid stability, providing a natural arena for electric vehicles to unlock their maximum potential
(Codani, Petit, and Perez 2015). Recent emphasis has been placed on the role of electric vehicles in frequency
regulation, with studies exploring vehicle aggregation through charging stations (Duan, Hu, and Song 2020) and
individual advantages for EV users (Kolawole and Al-Anbagi 2019). Numerous papers explore the involvement
of charging station aggregators with a fleet of vehicles in the European FCR market, some opting for V2G
technology (Amamra and Marco 2019), while others manage their energy consumption in either an upward or
downward direction (Duan, Hu, and Song 2020; Čičić, Gasnier, and Canudas-de-Wit 2023).

Our work introduces an innovative approach utilizing aggregated electric vehicle charging stations for
participation in the auxiliary markets, contributing to grid-balancing services. A significant departure from
prior studies (Rodriguez-Vega et al. 2023; Mourgues, Rodriguez-Vega, and Canudas-de-Wit 2023; Niazi et al.
2021) lies in the introduction of a novel graph model, incorporating elements related to charging stations such
as occupancy, average state of charge (SoC) of electric vehicles, and power exchange with the grid. Seamlessly
integrated with an electric vehicle mobility model, our approach considers various allocation ratios based on the
average SoC of vehicles near charging stations and the energy price, connecting with the frequency containment
reserves market operation. Within this framework, we design pricing optimal strategies with the dual goals
of maximizing profits for aggregators and charging station operators, while minimizing energy charging costs
for EV users. Realistic simulations encompassing EV mobility and the Electricity FCR market validate the
effectiveness of this pricing strategy in achieving these objectives.
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(a) Overal Strategy (b) EVs mobility and SoC model (c) FCR market settlement

Figure 1: (a). Schematic representation of the whole systems operation. Decision variables are in blue (b). Tree-node
model example used for illustration. Yellow circles represent origin/destination nodes, while green node symbolize the
charging station. (c). (uper figure) FCR market price settlement process showing the demand, supply bits and the cleared
market price. The lower curve show the FCR price evolution of FCR prices during a day in periods of 4 hrs

2 Methodology

Overal strategy Fig. 1a show an schematic representation of all the components including in this study.
EPEX Spot determines spot prices πspot in d/MW by constantly matching buyers’ and sellers’ orders based on
their submitted bid and ask prices. The spot price used will be that of the day-ahead market, which is set one day
before delivery for France. The Frequency Containment Reserve (FCR) , is a vital component of the ancillary
service sector. This ancillary service is regulating grid frequency, safeguarding the stability of the power network.
FCR is in the primary reserve category, characterized by its rapid response capability, acting in less than 30
seconds. Participation in the primary reserve market necessitates the ability to adjust power consumption, both
upward and downward, ensuring a dynamic response to grid frequency fluctuations. Market resolution occurs
on a day-ahead basis, segmented into six time blocks of four hours each. The CSO block represent the Charge
station operators, or aggregators that wish to use the storage EVs capabilities for leveraging the "e-flexibility"
from EVs, and enter into the FCR markets. For that the CSO, must submit available power quantity PB in
MW and minimum compensation price πB in d/MW for every time block. Once the FCR market settles, it
returns the approved power quantity PM in MW and price πM in d/MW. Simultaneously, the EPEX Spot
market establishes electricity prices for the next day by country. In the Intraday phase, the CSO set the charge
prices πC in d/kWh , based on the spot and return price πspot, πM . When the CSO participates in FCR, it
must be capable of both increasing and reducing its charging power. The CSO must also set price πC in a way
that ensures there is always enough vehicles available to meet the grid operator’s demands. The optimal CSO
strategy is determined through the utilization of a predictive model for Electric Vehicles (EVs) mobility and
their State of Charge (SoC). This ensures that the optimization process quantifies the potential energy reserve
of EVs. The three key phases involved in this process are briefly outlined below: the FCS market settlement
process, the model for EVs mobility and SoC, and the optimization problem.

FCR market settlement process. The settlement of the FCR market is achieved by solving two LP
problems. The first maximizes the amount of power exchanged while ensuring that the highest bid price remains
lower than the lowest ask price. The second determining the buying/selling price for all participants in the FCR
market, ensuring an equitable outcome for all. These two LP problems are including the whole optimization
problem. Fig. 1c shows the market resolution process. All offers positioned before the intersection point of the
demand curve and the supply curve are considered retained offers. The point where these two curves intersect
also defines the price per MW. The figure also displays the evolution of the settled price in the FCR market for
a day across the 6 time slots.

Mobility and SoC-Energy model The studied system, illustrated in Fig. 1b, consists of a single route
connecting two nodes, featuring road links in both directions. Along this route, a public charging station is
positioned on one of the roads. The flow of EVs traveling on this road is divided to access the charging station,
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based on factors such as the Evs’ SoC and the prevailing charging/discharging prices. In the model used, vehicles
present at the charging station are all connected to the grid. Their charge rate can be modulated by the Charge
Station Operator to conform with the grid request operation. Once the EVs have completed their charging,
the outflow from the charging station returns to the relevant node. Finally, and without of generality lost, EVs
return to their origin node to complete the journey. Integration of all components lead to a model of a form
(Details of the model can be found on Gasnier and Canudas-de-Wit 2024).

ẋ(t) = f(x(t), πC , PM
k ,∆Pl, t) (1)

where ∆P (t) ∈ [−PM , PM ] is a random variable describing the real-time power requested by the TSO to the
CSO, and representing the mismatch between power supply and load demand due to the renewable energy sources
(RES) uncertainly production. Solving (1) isn’t a straightforward due to non-causal components stemming from
PM
k , and the random nature of ∆Pl. Nevertheless, solving (1) is equivalent to solve the following optimization

problem. P1: Given ∆Pl, solve ∀k ∈ Zk: PM
k = maxλk≥0 λk, under: i) : ẋ(t) = f(x(t), πC , λk,∆Pl, t),

ii)0 ≤ λk ≤ minτ∈Ik

{
PCSN(τ)

2

}
.

Optimal energy-price strategy The CSO has two different sources of revenue. The first is the earnings from
selling energy to EVs, given by

∫ t
0 π

C P̃ , while the second source is the earnings from selling capacity in the FCR
market, which is calculated as

∑6
k=1 π

M
k PM

k for each 4-hour block k. Therefore, the function J calculates the
total earnings for the full day, J(x, πC , PM , πM ) =

∫ T
0 πC P̃ dt+

∑6
k=1 π

M
k PM

k . The ideal optimization problem
aims to find the values of πC that maximize the earnings given by the function J under the systems dynamics (1),
or equivalent under the solution of problem P1: π∗C = maxπC J(x, πC , PM , πM ), underP1. The optimization
is solvable only if the following information is available: 1) the results of the FCR market settlement (i.e.
PM and πM ), and 2) the grid’s regulation demand ∆Pl. However, πM becomes known only after the market
clears and cannot be predicted in advance. Additionally, real-time knowledge of ∆Pl is not available. For the
optimization be feasible,the problem P1 is modified through the incorporation of bounds on ∆Pl ≤ PM , i.e. P2:
P̂M
k = maxλk≥0 λk, under: ˙̂x(t) = f(x̂(t), πC , λk,∆P̂l, t), 0 ≤ λk ≤ minτ∈Ik

{
PCSN̂(τ)

2

}
, ∆P̂l ≤ λk, ∆P̂l ≥ −λk.

And introducing computable upper bound on J ; Ĵ(x̂, πC , P̂M ) =
∫ T
0 πCPCSN̂dt + πM

max

∑6
k=1 P̂

M
k , where N̂ ,

and P̂M
k are obtained from Problem P2. The final optimal energy-price strategy is now defined as:

Main result. The computable optimal energy-price strategy consist in solving the optimal problem: P3: For all
k ∈ Zk, l ∈ Zl solve: π̂∗C = maxπC∈ΠC Ĵ(x̂, πC , P̂M ) under P2

The evaluation of the real benefits need to be done using the true cost function J , by replacing the
computed optimal price π̂∗C and P̂M obtained from P3, in the ground true equation (1), i.e. ẋ∗(t) =
f(x∗(t), π̂∗C , P̂M ,∆Pl, t) and finally using this ground true solution to evaluate the effective utility benefits
J(x∗, π∗C , P̂M , πM ). This value will depends on the particular sequence ∆Pl resulting from the day profile
difference between power demand and power production variability.

3 Results–simulation scenarios

The first Scenario shown in Figure 2a evaluates the distant to optimally. From this figure we can observe that the
optimization problem is indeed convex. We can also see that the upper bound Ĵ of the approximated problem
results in a tied bound for J , and provides optimal prices closed to the true optimal ones. Finally, note that the
electricity price to be sell to the EVs user, is with this optimisation strategy, substantially lower than the one of
the "nominal" (without enter to the FCR market) electricity price πC

n = 0.4d. π̂∗C is 15% lower than πC
n .

Figure 2b shown the profits evaluation incurred by the CSO due to its participation to the FCR market.
Consider the previous realization set ΛP for ∆Pl. Assume that the CSO sell electricity at nominal price πC

n =

0.4d without participating to the FCR market. The CSO revenues is: Jn =
∫ T
0 πC

n P̃ndt where P̃n results from
solving problem P1 with πC = πC

n . However, when the CSO enter to the market, the CSO optimal revenues
are: J∗ =

∫ T
0 π̂∗C P̃ ∗dt +

∑6
k=1 π

M
k P̂M

k where π̂∗C comes from solving problem P3, and P̃ ∗(x∗) from solving
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(a) Distant to optimally (b) FCR market profit evaluationFigure 2: Simulation scenarios.

the ground true system, with the optimal value π̂∗C . Benefits (Figure 2a) for the CSO are then computed:
$CSO = J∗ − Jn. An EV is considered charged when it leaves the charging station. We compute the number of
EVs served (charged) at the CS during a 24hr day period, N ,N ∗ for nominal price πC

n , and optimal price π̂∗C ,
respectively. Figure 2b shows the respective benefits as a function of the different realizations. The average
profit increase for the CSO $CSO

k is 22, 700d, with 1,476.80d coming from the sale of capacity on the FCR
market. The rest of the profit increase is attributed to a higher influx of EVs due to the more attractive pricing
illustrated by the comparison of N and N ∗.

4 Conclusions
In this study, we introduce an approach to integrate Charging Station Operators (CSOs) into the Frequency
Containment Reserves (FCR) market. Our framework includes a mobility model, CS aggregators/operators, and
FCR market operations. Anticipating the FCR market settlement price is a challenge; nevertheless, our research
introduces a strategic bidding approach and an energy pricing strategy for CSOs. Our findings highlight that
CSOs’ active involvement in the FCR market not only boosts their revenue but also reduces charging expenses
for Electric Vehicle (EV) users. Future research could extend the framework by incorporating competition
dynamics among multiple charging stations.
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