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1     INTRODUCTION 
 

In the rapidly evolving field of autonomous vehicles, the imperative to discern the congnitive state of 

drivers by monitoring their physiological data has become increasingly apparent (Reimer and Mehler, 

2011). Among a range of physiological indicators, eye movement data, particularly pupil diameter, 

directly reflects a driver’s focus and is utilized to evaluate the psychological load during the driving 

process (Radhakrishnan et al., 2023). Bitkina et al. (2021) demonstrated that pupil diameter and X-axis 

glance fixation were the most relevant metrics for assessing driver congnitive state. Zhou et al. (2022) 

built a machine learning model for predicting situational awareness via light gradient boosting machine 

(LightGBM) using only eye-tracking data. Although research on eye movements and driver states has 

been well established, in-depth eye movement studies of drivers during autonomous driving are scarce, 

and the scenario design and data quality of most of these studies leave much to be desired. 

Our research collected eye movement data from 12 drivers under various driving conditions, 

including non-driving-related tasks (NDRT), light intensity, and driving mode. LightGBM was 

employed to classify load states, and Shapley Additive exPlanations (SHAP) were utilized to interpret 

results. The analysis underscored the significant role of fixation point data in determining the load states 

of the drivers. Consequently, following the clustering of fixation point data, a Markov chain based on 

fixation regions was established for analysis. This approach facilitated the identification of eye 

movement state transition patterns under different cognitive conditions. 

 

2     METHOD 
 

2.1  Experimental Design and Data Collection 
 

We are recruiting 12 experienced drivers as participants, who will wear Tobii Pro Glasses 3 to collect 

eye-related data while driving in a simulator. The simulated environment is an urban road, constructed 

using CARLA, an open-source autonomous driving simulator (Dosovitskiy et al., 2017), includes 

variables such as the presence of non-driving-related tasks (NDRT), light intensity, and driving mode. 
Based on these three variables, six experimental scenarios were designed as shown in Table 1. We 

require the driver to focus on driving, therefore, no NDRT were set up under manual driving conditions. 

Notably, the autonomous mode corresponds to Level 2 autonomy, where drivers maintain a driving 

posture and continuous road awareness. The Twnty Questions Task (TQT) serves as the NDRT for 

assessing cognitive status. 

Table 1 – Experimental Scenario Design 

Scenario Driving mode NDRT Light intensity 

1 Manual × Daytime 

2 Manual × Nighttime 

3 Autonomous × Daytime 

4 Autonomous × Nighttime 

5 Autonomous √ Daytime 

6 Autonomous √ Nighttime 

 

Ultimately, we arranged six experimental scenarios in a Latin square design to randomize the 

order of conditions. The collected raw data undergo preprocessing—including assisted mapping and 

selection of times of interest—to facilitate effective data analysis and modeling. The nine features 

reserved and their explanations are presented in Table 2. 

 



Table 2 – Features Reserved and Their Explanations 

Features Explanations 

ADWF Average duration of whole fixations 

NWF Number of whole fixations 

APD Average whole-fixation pupil diameter 

NA Number of saccades 

APVS Average peak velocity of saccades 

MPVA Maximum peak velocity of saccades 

SDPVA Standard deviation of peak velocity of saccades 

AAS Average amplitude of saccades 

MAS Maximum amplitude of saccades 

 

2.2  Significant Feature Analysis  
 

In our study, LightGBM is employed to classify distinct categories of experimental variables, such as 

differentiating between driving conditions with or without NDRT. LightGBM is an advanced ensemble 

machine learning framework that leverages gradient-boosted decision trees for enhanced predictive 

accuracy (Zhou et al., 2022). Binary cross-entropy is used as the loss function during the training process. 

A gradient-based optimization algorithm is employed to minimize the loss function. 

SHAP is a method for interpreting machine learning models (Lundberg and Lee, 2017). The 

SHAP values are calculated for each feature to determine its contribution to the model's classification 

result. 

 

2.3  Fixation Area Division and Markov Chain Model  
 
The mini-batch K-means algorithm is applied in the research. It is a variant of the K-means clustering 

algorithm that uses small and random subsets of the dataset for each iteration, improving speed and 

scalability for large datasets. The optimal number of clusters is determined by comparing three 

indicators, i.e., Silhouette coefficient, Calinski-Harabasz index, and Davies-Bouldin index.  

The Markov chain model is employed to examine the regularities in the transitions of eye 

movement states. Markov chain is a stochastic model that describes a sequence of possible events in 

which the probability of each event only depends on the state attained in the previous event.  
Define the areas formed by clustering fixation points as the states in a Markov chain, compute 

the transition probabilities to generate a one-step transition matrix. After a finite number of sequential 

transitions, the state transition matrix will eventually reach a stable probability distribution. Assuming 

that 𝑋 = {𝑋𝑛, 𝑛 = 0,1,2… } is a homogeneous Markov chain with state space 𝑆  and transition 

probability 𝑃𝑖𝑗, there exists a steady-state probability distribution  {𝜋𝑗, 𝑗 ∈ 𝑆}, if it satisfies: 

{
 
 

 
 

 

𝜋𝑗 =∑𝜋𝑗𝑃𝑖𝑖
𝑗=1

∑𝜋𝑗
𝑗=1

= 1, 𝜋𝑗 ≥ 0
                                                                 (1) 

The probability distribution {𝜋𝑖, 𝑗 ∈ 𝑆} is referred to as the stationary distribution of the Markov 

chain. 

3     RESULT 
 

3.1  SHAP Result 
 

Figure 1 presents the SHAP results for the LightGBM models, utilizing three variables as independent 

outputs and nine eye movement features as inputs. Specifically, label 'a' indicates the presence of NDRT, 



label 'b' pertains to different light intensities, and label 'c' represents various driving modes. In Figure 1-

a, ADWF shows significantly higher SHAP values compared to other variables, underscoring the 

importance of fixation-related information. In Figure 1-b, APD achieves the highest SHAP values 

mainly due to physiological reactions to brightness variations between daytime and nighttime, followed 

closely by SDPVA and NWF, which indicate the significance of the standard deviation of peak saccadic 

velocity and the total number of fixations, respectively. In Figure 1-c, the critical variables are AAS and 

NWF. 

Overall, whether ADWF or NWF, fixation-related information proves to be an extremely 

important feature for researching driver load states, consistent with the findings of El Khatib et al. (2020). 

 
Figure 1 – SHAP value distributions 

 

3.2  Clustering Results 
 
Having established the significance of fixation data, mini-batch K-means clustering is used to visualize 

eye fixation information. Figure 2 illustrates the clustering results of fixation point coordinates, 

displaying a diverse set of colored dots where each color represents a distinct cluster. Seven clusters, 

denoted as Areas 1 through 7, are identified; Areas 1, 2, 3, and 4 are centered on the windshield, Area 5 

focuses on the vehicle’s dashboard, and Areas 6 and 7 correspond to the right and left rearview mirror 

areas, respectively. The analysis reveals that users' fixation is most frequently centered on the front road and 

diminishes gradually towards the sides. Fixations on the rearview mirrors are primarily concentrated within 

the lane markings, indicating strategic monitoring of surrounding traffic. 

 
Figure 2 – Fixation point clustering result 

 

3.3  State Transition Matrix 
 

Table 2 shows the steady-state probability distribution of fixation points in each area under different 

driving conditions based on the Markov chain. The following conclusions can be drawn from Table 2: 



1. An increase in cognitive load levels (such as with NDRT, nighttime, and manual driving) 

results in drivers looking at the dashboard (Area 5) more frequently; conversely, drivers tend to focus 

more on the road ahead (Area 1, 2, 3) under opposite conditions; 

2. When cognitive load is high, drivers are more likely to focus on the area directly ahead and 

the dashboard, whereas under lower cognitive loads, drivers are more likely to look at other areas; 

3. The effects of NDRT and light intensity on drivers are similar, but the impact of driving mode 

is less significant. 

Table 2 – Steady-state Probability Distribution Matrix 

Variables Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 

Without NDRT 0.07  0.30  0.17  0.08  0.28  0.07  0.04  

With NDRT 0.10  0.24  0.12  0.04  0.44  0.03  0.03  

Daytime 0.11  0.32  0.15  0.07  0.28  0.04  0.03  

Nighttime 0.07  0.22  0.13  0.05  0.43  0.05  0.04  

Autonomous 0.07  0.30  0.17  0.08  0.28  0.07  0.04  

Manual 0.10  0.32  0.13  0.04  0.32  0.05  0.03  

 
Figure 3 shows the state transition matrices under 6 driving scenarios by Markov chain. The 

number in each cell represents the probability of transitioning from the region on the y-axis to the region 

on the x-axis. The assignment of matrices across different conditions is as follows: Matrix 'a' 

corresponds to the non-NDRT condition, matrix 'b' to daytime driving, and matrix 'c' to autonomous 

driving. Conversely, matrix 'd' is associated with NDRT, matrix 'e' with nighttime conditions, and matrix 

'f' with manual driving. The following inference can be drawn: 

1. As the cognitive load increased (a to d, b to e, c to f), the driver's fixation preference for the 

dashboard was confirmed by an increase in the probability of several all areas to the dashboard (Area 

5). 

2. When the cognitive load was low, drivers were more distracted, mainly in the form of a 

greater sweep of the front right-side area. This is reflected in a higher probability of moving from Area 

3 to Area 4 and from Area 4 to Area 3. 

3. The above findings are further confirmed by the fact that drivers pay more attention to the 

dashboard when cognitive load is high. The presence of NDRT and light intensity had a more significant 

effect on the driver's fixation, while the presence of autopilot had a lesser effect. 

 
Figure 3 – State transition matrices under 6 driving scenarios  



4     CONCLUSION 
 
Eye movement data were collected from 12 drivers under various driving conditions and analyzed using 

LightGBM classification, enhanced by SHAP interpretations. We specifically focused on fixation data, 

applying mini-batch K-means clustering and Markov chain models to gain a detailed understanding of 

fixation behaviors under different cognitive loads. By integrating the results from the steady-state 

probability distribution and the state transition matrices of the fixation points, we can draw several 

potential conclusions. 

Cognitive load levels during driving affect drivers' eye movement characteristics. As cognitive 

load increases, drivers' attention shifts from the road ahead to the dashboard, providing a rapid method 

to gauge vehicle safety and operational status. This shift offers drivers a more intuitive overview than 

observing the road ahead. Conversely, a low cognitive load may lead to distractions, causing their gaze 

to wander around the forward area. Our study gains novel insights into the dynamics of driver's gaze 

and attention, thereby contributing to improving safety features and the design of cognitive load 

management for autonomous vehicles. 

This extended abstract may be considered as a foundation for more intricate modeling 

approaches, we acknowledge the limitations associated with conclusions derived from modeling 

analyses that utilized data from 12 drivers. Future work will conduct experiments on a larger dataset, 

considering the inclusion of more physiological data, such as electroencephalogram (EEG) and 

electrocardiogram (ECG), to form a multimodal dataset for studying driver cognitive load. Additionally, 

models with stronger feature extraction capabilities, such as deep neural networks, will be applied for 

modeling. 
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