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1 INTRODUCTION

Satellite imagery has become increasingly crucial in analyzing the dynamic changes in urban
spaces and their relationship with travel behavior. Particularly important is the analysis of
asymmetric interactions among different modes, such as pedestrians and vehicles, within confined
urban spaces, and accurately predicting mutual externalities. In this context, it is essential to
appropriately address the endogeneity of interactions between modes within the model framework
and learn parameters using satellite imagery data.

There are typically two methods to estimate the endogenous effect, structure estimation
and mathematical programs with equilibrium constraints (MPEC)(Ferris et al., 2005). How-
ever, interaction estimation by structure estimation is sometimes difficult because of the lack of
distinguishability and heavy computation for the iterative calculation to obtain the equilibrium
numerically(Aguirregabiria & Mira, 2007).

On the other hand, the MPEC-based methods are flexible and compatible with the ma-
chine learning framework. For example, multi-agent adversarial inverse reinforcement learning
(AIRL)(Yu et al., 2019) can reveal the user preference under a user equilibrium state, which can
interpreted as an MPEC problem. However, there are still limitations in that the interaction
value itself cannot be distinguished from the user reward function and the characteristics of the
obtained equilibrium state are not revealed.

The main contribution of this study is as follows:

• The proposal of the stable interaction estimation method by introducing the Lipschitz
normalization to the AIRL model.

• The analysis of the uneven multi-modal equilibrium between pedestrians and vehicles with
the existence of the interaction effect using the multi-modal learning method.

2 METHODOLOGY

2.1 Notation

We consider the situation where the agents are in the state s and move to state s′ by taking
actions a = (a1, · · · , aN )T . Context vector c is introduced to capture the trip destination(Zhao
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& Liang, 2023). The context vector is the shortest path to the destination in this study.

2.2 Multi-agent adversarial inverse reinforcement learning with Lipschitz
normalization

One of the two models to be trained in the AIRL-based route choice model is the generator model
πGi(ai|s; ci) called actor, and it calculates the probability of the agent i’s action ai given the state
s. The other model is the discriminator model called critic, and it computes the probability that
the pair of action and state belongs to the real data. The critic function is written as Eq. 1.

Dθi,ϕi(s, ai, s
′; a−i, c) =

exp {fθi,ϕi(s, ai, s′; a−i, ci)}
exp {fθ,ϕ(s, ai, s′; a−i, ci)}+ πG(ai|s; ci)

(1)

where θi, ϕi are the parameters of the critic function for agent i. The function fθi,ϕi(s, ai, s
′; a−i, ci)

is the estimator of the advantage function and structured by gθi and hϕi , which are the estimator
of the utility function and the value function. The discount factor γ is introduced.

To train these two models, they share a part of the objective function, and the actor func-
tion tries to increase Dθi,ϕi and the critic function tries to decrease it. Under the estimation of
multi-transportation utility, the user-equilibrium, the logistic stochastic best response equilib-
rium (LSBRE) (Yu et al., 2019) as shown in Eq. 2, is satisfied.

π(ai|a−i, s; c) =
exp(λQπ

i (ai, a−i, s; c))∑
a′i∈Ai

exp(λQπ
i (a

′
i, a−i, s; c))

≈ Softmax(λQπi
i (π−i, s)) (2)

where ai, a−i are the action of the agent i and the action of the other agents, respectively.
Qπ
i (ai, a−i, s; c) is the Q function and λ is the parameter that shows the greediness of the agents.

Here, we analyze the stability of the estimated equilibrium based on feedback from other
agents when the slight perturbation affects the equilibrium state. The concept is shown in
Figure 1. The time average of the derivative of the probability that the transportation i takes
the action ai for the transportation −i’s action function is written as Eq. 3.

E

[
∂πi,ai
∂π−i

]
= πi,ai

∑
a′i

(δai,a′i − πi,a′i)E(s,a)

[∑
t

γt
∂ri(st, ai,t, π−i; c)

∂π−i

]
(3)

where ri is the reward function of the agent i. The stability of the equilibrium can be analyzed
by the maximum eigenvalue of the Jacobian of the action functions. The equilibrium is stable if
the absolute value of the maximum eigenvalue of the Jacobian is less than 1.

∥δπ−i∥2 ≥ ∥∂π−i
∂πi

∂πi
∂π−i

δπ−i∥2 (4)

Figure 1 – The equilibrium types based on asymmetry of choice probability and the stability anal-
ysis with the multi-agent interaction: (a) agent i is excluded, (b) two stable equilibriums and one
unstable equilibrium, (c) agent i occupies.
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On the other hand, to reveal the effect of interactions quantitatively, the estimator of the
advantage function for the agent i is rewritten as Eq. 5.

fθi,ϕi,ψi
(s, a, s′, π; c) = gθi(s, ai : c) + lψi

(s, ai, π−i(a−i|s); c) + γhϕi(s
′; c)− hϕi(s; c) (5)

where gθi captures the direct utility of action under the state, and lψi
captures the interaction

term among multiple transportation modes. π−i means the marginal distribution of other agents
for the given destination distribution.

Now, we consider the estimation of the stable equilibrium using the multi-agent AIRL with
an interaction term. The Jacobian of the reward function can be written only with lψ, and
improving the smoothness of lψ can enhance the stability of the equilibrium. The concept of
Lipschitz norm can be used as a measure of the smoothness of the neural network function, and
the Lipschitz norm of neural networks can be efficiently regularized by the spectral normalization
method (Miyato et al., 2018).

2.3 Multi-modal learning for equilibrium analysis

From Figure 1, the effect of the interaction term tends to lead to the occupation or sparseness of
the specific agent for each choice set, which means that each choice set can be classified by the
occupation of the agents.

One candidate variable to explain the type of the choice sets is the spatial feature, such as
the satellite images. The domain of the satellite image and that of route choice are completely
different, but the concept of multimodal learning is expected to be useful in extracting the spatial
feature from the satellite image. In this research, we trained the image feature encoder using
the loss function of the actor function to compare the spatial feature of the mesh with different
occupation tendencies. The overview of the satellite image integration process is shown in Figure
2.

Figure 2 – Overview of the multi-modal learning process combining satellite images and route
choice data.

3 RESULTS

3.1 Experiment settings

The proposed method is applied in Matsuyama City, Ehime, Japan. The route choice data of
pedestrians and cars are obtained from GPS data from the survey in 2007. The mesh network is
defined with 100m square grids, and each GPS point is allocated to the mesh network. Training
(test) data contains 1675 (1689) route choice behaviors for pedestrians and 1759 (1334) for
vehicles, respectively. The 2-layer convolutional neural networks with kernel size is 3 × 3 are
used for the actor functions and critic functions.

The aviation image data with 0.5m resolution are used instead of satellite image data and
obtained from the Geospatial Information Authority of Japan. The image data is compressed
into 10-dimensional vectors using ResNet37(Bello, n.d.). The extracted feature is concatenated
with the original mesh variables which are obtained from the basic survey of urban planning in
Matsuyama City in 2018.
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3.2 Evaluation metrics

The log-likelihood functions with and without the Lipschitz normalization and image feature
are shown in Table 1. The initial log-likelihood is −2811.40 for pedestrians and −2025.38 for
vehicles. In addition, some meshes with strong negative interaction effects are sampled and
shown in Figure 3. The SHAP values for each model are also shown.

Table 1 – Log-likelihood of AIRL-based route choice models

Model Pedestrian Vehicle
No image, No normalization -2707.01 -1776.24
No image, Normalization -2703.66 -1766.62
Image, No normalization -2700.47 -1773.86
Image, Normalization -2694.94 -1760.09

Figure 3 – Image, land use, and SHAP values for the encoder for the large interaction meshes:
(a) negative interaction for pedestrians, (b)negative interaction for vehicles.

4 DISCUSSION

From Table 1, the Lipschitz normalization on the interaction term and the image feature improves
the log-likelihood of the model. The revealed interaction effect tends to be different between
pedestrians and vehicles. From Figure 3, for example, the negative effect is observed at the
intersection and parking area for pedestrians and the area with high buildings such as the central
area or the area near the station for vehicles.

In future work, the incorporation of more detailed spatial features such as street-view images
is expected to be useful for the analysis of the multi-modal equilibrium.
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