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1 INTRODUCTION

The origin-destination (OD) matrix for a bus route captures passenger flows from one stop to
another, serving as a comprehensive representation of passenger demand. These matrices can be
defined either in an aggregated manner (e.g., overall demand during morning rush hours) or in
detail for each bus journey. An accurate estimation of the OD matrices and a good understanding
of how these matrices evolve over time are critical for transit agencies in making planning and
operational decisions, such as route design (Ahern et al., 2022), service scheduling (Martínez
et al., 2014), timetabling (Sun et al., 2014), and fleet allocation (Gkiotsalitis et al., 2019).

This study aims to infer time-varying OD matrices from boarding/alighting counts with
high temporal resolution. We extend the work of Hazelton (2010) and develop a temporal
Bayesian model for inferring transit OD matrices at the individual bus level. To model the
discrete count data, we assume that the number of alighting passengers at subsequent bus stops,
given a boarding stop, follows a multinomial distribution. To better characterize the temporal
patterns in passenger demand, we assume that the parameters (i.e., assignment probabilities)
of the multinomial distribution vary smoothly over time, thus allowing for building a time-
varying model using counts observed from a limited number of bus journeys. We introduce
a latent variable matrix and use it to parameterize the time-varying multinomial distributions
through the softmax transformation. In addition, we propose using matrix factorization to
parameterize the latent matrix as the product of a mapping factor matrix and a temporal factor
matrix, which substantially reduces the number of parameters. To encode a temporally smooth
structure in the matrix, we impose Gaussian process priors on the columns of the temporal
factor matrix, which consequently ensure that the assignment probabilities vary smoothly over
time. For model inference, we follow Hazelton (2010) and also develop a two-stage algorithm
based on MCMC. In the first stage, we sample latent OD matrices conditional on parameters
using the Metropolis-Hastings sampling algorithm with the proposal distribution proposed by
Hazelton (2010), which efficiently bypasses the need to enumerate the large number of feasible
OD matrices that align with observed boarding and alighting counts for each bus trip. In the
second stage, we sample model parameters conditional on latent OD matrices obtained from the
first stage. The key challenge in this step is to efficiently sample latent Gaussian processes with
non-Gaussian likelihood, where the posterior no longer has an analytical formulation. To address
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this issue, we use elliptical slice sampling (ESS), an efficient algorithm developed by Murray et al.
(2010), to sample the temporal factor matrix. We evaluate our proposed model using real-world
APC data and true OD matrices from three bus routes in an anonymous city. We compare the
performance of the proposed temporal model to a non-temporal variant, and the results show that
the temporal Bayesian model outperforms the non-temporal variant, confirming the importance
and value of developing a time-varying model. In addition, we also compare our model with the
widely used IPF method, and the results show that our model can achieve superior performance
in deterministic estimation.

2 PROBLEM DEFINITION

Consider a bus route comprising S stops at which passengers can board and alight. Let ui and vi
denote the numbers of boarding passengers and alighting passengers at stop i, respectively, for
i = 1, 2, . . . , S. Such boarding/alighting counts are available from the APC systems. In general,
we will see neither alighting passengers at stop 1 nor boarding passengers at stop S, so we can fix
v1 = uS = 0. For a bus journey (i.e., a trip from stop 1 to stop S), we denote by yi,j the number
of passengers who board at stop i and alight at stop j, which cannot be observed directly. Let
u = (u1, u2, . . . , uS)

⊤ and v = (v1, v2, . . . , vS)
⊤ be the vectors of boarding and alighting counts

at the stops, respectively; we then denote by x =
(
u⊤,v⊤

)⊤
= (u1, u2, . . . , uS , v1, v2, . . . , vS)

⊤

as the aggregation of observed counts for a bus trip.
Our study aims to infer the OD matrix Y = (yi,j)S×S . For a bus route/service, it is clear that

passengers can only travel to downstream stops. Thus, we fix yi,j = 0 for all cases where i ≥ j,
and focus exclusively on the upper-triangular part of Y . Following Hazelton (2010), we denote
by yi the number of passengers traveling from the i-th stop to the subsequent stops along the
bus route. For instance, y1 = (y1,2, y1,3, . . . , y1,S)

⊤ denotes the passenger counts from the initial
stop to all subsequent stops along the route. This definition continues to yS−1 = (yS−1,S), which
represents the number of passengers traveling from the second-to-last stop to the last stop. Next,
we stack these passenger counts into a single OD vector y =

(
y⊤1 ,y

⊤
2 , . . . ,y

⊤
S−1

)⊤ ∈ RS(S−1)/2.
Although y is not directly observable, its relationship with the observed boarding and alighting
counts can be expressed as follows x = Ay, where A is a 2S ×M binary routing matrix.

To account for multiple bus journeys, we extend the notation to include a bus index n, which
represents the n-th bus journey, with xn =

(
un⊤,vn⊤

)⊤ and yn =
(
yn1

⊤, . . . ,ynS−1
⊤)⊤. To

effectively model the dynamic/time-varying nature of OD matrices/vectors, our model incor-
porates temporal information. Specifically, we denote by tn the departure time at the initial
stop for the n-th bus trip/journey. For a total of N bus journeys over a studied period, we
define X = {xn | n = 1, 2, . . . , N} as the set of observed boarding and alighting counts and
t =

(
t1, t2, . . . , tN

)⊤ as the vector of observed departure time. The primary objective is to esti-
mate the set of OD vectors, denoted as Y = {yn | n = 1, 2, . . . , N}, using observed data set X
and t. This problem is challenging because the number of unknown quantities (OD vector) is
much larger than the number of observations (boarding and alighting counts) in the linear sys-
tem, resulting in a challenging statistical linear inverse problem (Vardi, 1996, Hazelton, 2010).
We denote by H (xn) = {yn | xn = Ayn} the solution space that encompasses all feasible OD
vectors consistent with the observation xn. In general, the solution space could be very large
even for a route with a modest number of stops.

3 METHODOLOGY

Let λn
i,j be the probability that a passenger boarding at stop i will alight at stop j during the

n-th bus trip. Furthermore, let λn
i =

(
λn
i,i+1, . . . , λ

n
i,S

)⊤
be the alighting probabilities of down-

stream stops for a passenger boarding at stop i, and the sum of these probabilities is one, i.e.,

TRC-30 Original abstract submittal



Xiaoxu Chen, Zhanhong Cheng, and Lijun Sun 3

∑S
j=i+1 λ

n
i,j = 1. Next, let λn =

(
λn
1
⊤, . . . ,λn

S−1
⊤)⊤ denote probabilities for all the correspond-

ing OD entries of the n-th bus trip. Assuming that passengers make decisions independently, yni
follows a multinomial distribution yni ∼ Multinomial (uni ,λ

n
i ). Specifically, it can be represented

as p (yni | uni ,λn
i ) = uni !

∏S
j=i+1

λn
i,j

yni,j

yni,j !
, and the likelihood of observing xn becomes

L (λn) = p (xn | λn) =
∑

yn∈H(xn)

S−1∏
i=1

uni !
S∏

j=i+1

λn
i,j

yni,j

yni,j !
. (1)

For modeling multiple bus journeys in a day, we expect λn
i to vary smoothly from one

bus to the next (or over time). In this case, we need an effective parameterization that pro-
duces time-varying multinomial probabilities. We employ a natural softmax parameterization

λn
i = Softmax (ρGn

i ), where Gn
i =

(
Gn

i,i+1, G
n
i,i+2, . . . , G

n
i,S−1

)⊤
∈ RS−i−1, and ρ > 0 is the

temperature parameter, which can help to learn good sharpness/smoothness of the probability
distribution. Next, we denote the collection of Gn

i over N bus journeys by the matrix Gi =[
G1

i ,G
2
i , . . . ,G

N
i

]
. Next, we assume Gi has a low-rank structure Gi = ΦiΨ

⊤ =
∑D

d=1ϕi,dψ
⊤
d ,

where Φi ∈ R(S−i−1)×D, Ψd ∈ RN×D, and ϕi,d and ψd are the d-th column of Φi and Ψ, respec-
tively. To encode temporal smoothness in G, we assume that each column ψd in Ψ is generated
from a latent Gaussian process by taking values at bus departure times t with kernel/covariance
function kd (t, t

′;ηd) where ηd is the vector of kernel hyperparameters. For model inference, we
develop a two-stage algorithm based on MCMC, which can be found in the detailed work (Chen
et al., 2024).

4 RESULTS

To evaluate our approach, we use high-quality data from three distinct bus routes in a city—a
short route with 22 stops, a medium route with 40 stops, and a long route with 72 stops. We
apply the proposed model to infer/estimate OD matrices based on the counts and use the real
OD matrices to evaluate the performance. We compare the performance of our model with the
widely used IPF method (Ben-Akiva et al., 1985).

To demonstrate the importance of integrating temporal dynamics in OD matrix estimation,
we compare the performance of the temporal Bayesian model with a non-temporal variant. The
non-temporal approach assumes static parameters and is derived from our model with rank
D = 1 and Ψ = 1N×1. This ensures that the N journeys share the same alighting probabilities.
We evaluate the log-likelihood of true OD matrices given the estimated multinomial parameters.
Table 1 presents the log-likelihood of different models for the estimation of OD matrices. For the
temporal Bayesian model, we implement four variants with different ranks (1, 2, 4 and 6). First,
we compare the static model with the temporal model with D = 1. The key difference between
these two models is the assumption of Ψ—the static model defines Ψ as a column vector of ones,
while the temporal model treats Ψ as a random vector generated from a Gaussian process. From
the results, we can see that having a temporal component can enhance the quality of the model,
confirming the importance of time-varying parameters for OD estimation.

Fig. 1 presents true and estimated OD flows at the journey level derived from the IPF
method and our model for the three routes. Because IPF is a deterministic method, for the
Bayesian method, we use the posterior mean as the estimated demand for model evaluation.
The diagonal line of each plot presents the reference line of perfect estimation where estimated
flows would align exactly with the true flows. The method with the dots closer to the reference
line has the more accurate estimation. We can observe that the dots obtained from our model
are closer to the reference line for all bus routes, indicating that our model outperforms the IPF
method. Moreover, we use the root mean square error (RMSE) to compare the performance of
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Table 1 – Log-likelihood of different models for OD matrices estimation.

Static model Temporal Bayesian model

D = 1 D = 2 D = 4 D = 6

Short route Mean -35328.77 -34829.07 -33728.49 -33064.69 -32874.45
Standard deviation 98.63 86.65 79.14 86.75 85.54

Medium route Mean -63599.00 -62915.15 -62141.88 -61652.34 -61539.26
Standard deviation 165.46 150.24 134.89 156.80 123.00

Long route Mean -47449.85 -47078.95 -46179.38 -45722.42 -45722.37
Standard deviation 158.43 139.10 134.59 134.88 124.12

Figure 1 – True and estimated OD flow of IPF and our proposed model for different routes.

our Bayesian model and the IPF method. The proposed model gives much smaller RMSE values
than those obtained from IPF, which demonstrates that our model outperforms IPF method.
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