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1 INTRODUCTION

Traffic resilience represents the “ability of an urban road transportation system to prepare for
different kinds of disruptions, effectively serve vehicles, and recover rapidly to its optimal serving
rate” (Lu et al., 2024). Compared to conventional definitions of transportation system resilience,
this concept emphasizes more on traffic flow efficiency. Our previous work (Lu et al., 2024) has
proposed robust traffic resilience indicators based on macroscopic fundamental diagram (MFD)
(Geroliminis & Daganzo, 2008) dynamics by relating system functionality, facility service rate,
and trip completion rate, capable of integrating transportation network characteristics, traffic
dynamics, and travel demand patterns. Moving one step forward, in this study, we are interested
in the question of whether current transportation networks are with their most traffic-resilient
configurations. To this end, we present a capacity allocation optimization problem with traffic
resilience maximization as the objective under conditions of existing structure and infrastructure
of transportation networks. In transportation networks, the capacity allocation problem can
be formulated as a combination of lane allocations in two-way roads and traffic signal timing.
Since lane allocations and traffic signal timing are typically modeled as integer and continuous
variables, respectively, this problem can be formulated as a Mixed Network Design Problem
(MNDP).

Given the efficacy of traffic simulations in modeling the sophisticated interplay between trans-
portation supply and demand and in estimating detailed traffic states under various decision
strategies, we propose a simulation-based approach to addressing the problem discussed above.
Specifically, a capacity allocation is sought, such that the resulting transportation network ex-
hibits the “best” performance according to network-wide traffic resilience indicators. A stochastic
approximation (SA) coupled with simultaneous perturbation (SP) gradient approximation is uti-
lized to locate the minimizer of the traffic simulator SUMO where only noisy evaluation is avail-
able. In particular, we integrate recent advances in second-order SA algorithms (Spall, 2009) and
mixed SP implementations (Wang et al., 2018) to develop a novel second-order mixed simulta-
neous perturbation stochastic approximation (2MSPSA) algorithm to solve the simulation-based
optimization problem.
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2 METHODOLOGY

2.1 Traffic resilience indicator based on macroscopic fundamental diagrams

The MFD-based indicators proposed in Lu et al. (2024) for measuring traffic resilience to conges-
tion and supply disruptions is employed here. They evaluate the functionality of transportation
systems with the trip completion rate derived from MFDs, such that the resilience loss can be
calculated by integrating the reduction in trip completion rates over the entire disruption period,
which is expressed as

Rd = −
∫ t1

t0

(Dc −D(t))H(k(t)− kc) dt (1)

Rs = −
∫ t1

t0

max {Ds(t)−D(t), 0} dt (2)

where t0 and t1 indicate the start and end of the disruption. D(t) and Ds(t) denote, at time
t, the trip completion rates under normal and disruptive conditions, respectively. Dc denotes
the critical trip completion rate under normal conditions. Rd and Rs represent the resilience
to traffic congestion and supply disruptions (infrastructure malfunction), respectively. H(·) is a
Heaviside step function, indicating whether traffic is in congestion states.

2.2 Capacity allocation

Denote the design capacity of a lane as qcap. Note that the effective capacity is different from
its design value, depending on the control measures in effect. For a certain approach of an
intersection, the effective capacity of a lane belonging to this approach can be estimated by
qeff = qcaptg/T (see Figure 1), where tg is the green time assigned to the phase of this approach
and T is the signal cycle. Simply speaking, the capacity of a link is determined by its number of
lanes and the traffic signal plan. It follows that capacity allocation is achieved by altering lane
allocations and traffic signals. Therefore, lane allocation and traffic signal schedule are the two
types of decisions employed in this study to perform transportation network capacity allocation.

2.3 Simulation-based capacity allocation optimization

The simulation-based capacity allocation optimization (SOCA) problem can be expressed as

(SOCA)min
z,x

Eξ = [y(z,x, ξ)] (3)

s.t. Eξ = [g(z,x, ξ)] ≤ 0 (4)
z + zopp = n (5)
Bx = T (6)
zl ≤ z ≤ zu (7)
xl ≤ x ≤ xu (8)

z ∈ Zd,x ∈ Rp−d (9)

where z denotes discrete lane allocation decisions and x denotes continuous traffic signal deci-
sions. Function y(·) represents the absolute traffic resilience loss with uncertainty which can be
evaluated through traffic simulation for a particular instance of decision inputs θ = [z⊤,x⊤]⊤ and
a realization of the random variables in the simulation, i.e., the vector ξ. g(·) is a vector-valued
function representing the constraints that need to be evaluated during the simulation, such as
route choice probabilities. Due to the complementary relationship between the lane numbers of
two links in opposite directions, the effective decisions in z reduce to half. This complementary
constraint can be expressed as Equation (5). The effective decisions in x are also fewer than
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the length of x with the consideration of a fixed traffic signal cycle. Equation (6) represents
the complementary relationship between phase splits belonging to the same traffic signal cycle,
where B is a signal-phase matrix describing the subordination of phases to traffic signals, and
T denotes the cycle time of these signals. In addition, bound constraints are imposed on the
decision variables. zl and zu in Equation (7) denote the possible minimum and maximum num-
ber of lanes of links, respectively. One can specify zl = 1nl

where 1nl
is a vector of ones with

length nl, the total number of links of the network, to avoid eliminating any existing routes.
Similarly, xl and xu in Equation (8) denote the minimum and maximum phase splits of traffic
signals, respectively. Note that in this formulation, the stochastic functions are considered with
their expected values.

Figure 1 – Calculation of ef-
fective capacity.
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Figure 2 – Flowchart of simulation-based resilient network design
based on capacity allocation.

In the case of traffic resilient network design, the objective function Equation (3) will be
converted to

y(z,x, ξ) = −wnDc − wdRd(z,x, ξ)−
∑
ϕ∈S

ws
ϕR

s(z,x, ξ, ϕ) (10)

where S indicates the set of typical supply disruption scenarios in the given city, and ϕ indicates a
certain disruption. wn, wd and ws

ϕ indicates, in capacity allocation optimization, the weights on
the resilience to normal daily operations, hyper-congestion and supply disruptions, respectively.

Figure 2 presents the framework for simulation-based resilient network design optimization.

2.4 Second-order mixed simultaneous perturbation stochastic approximation

Consider the simulation-based optimization setup, where R : Zd × R(p−d) 7→ R is the resilience
loss function to be minimized. The noisy loss function evaluation for θ is then given by y(θ) =
R(θ) + ϵ(θ) where ϵ(·) represents a noise function. Second-order SA algorithms incorporate the
following updating recursion

θ̂k+1 = θ̂k − ak
¯̄H−1
k (θ̂k)Ĝk(θ̂k) (11)

where k = 0, 1, . . . , N indicates the iteration index, {ak}k≥0 is a positive decaying scalar gain
sequence, Ĝk(θ̂k) is the approximated gradient, and ¯̄Hk denotes the approximation of the Hessian
information. SP methods approximates the gradient by

Ĝk(θ̂k) =
yk(θ̂

(+)
k )− yk(θ̂

(−)
k )

2Ck ◦∆k
(12)

where θ̂
(±)
k = π(θ̂k)±Ck ◦∆k with π(θ̂k) = (⌊θ̂k,1⌋+0.5, . . . , ⌊θ̂k,d⌋+0.5, θ̂k,d+1, . . . , θ̂k,p)

⊤, ∆k

represents a p–dimensional vector with each element independently generated from a Bernoulli
±1 distribution with probability 0.5 for each outcome, and Ck = (0.5, . . . , 0.5, ck, . . . , ck)

⊤ with
the first d elements as 0.5 and the rest are ck, where {ck}k≥0 is also a positive decaying scalar
gain sequence. For the Hessian estimate ¯̄Hk, we extend the one presented in Spall (2009) to the
problems with mixed variables. More details will be provided in the full version of the paper.
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3 RESULTS

We implement a case study using the network of Munich city center, Germany, which is about
100 km2 large with 2605 links. A calibrated mesoscopic SUMO model is used to simulate the
traffic dynamics under different network states for the morning period from 5 am to 10 am. We
consider a network-wide flood disruption scenario and model it as a 30% speed reduction due to
road inundation. In the SOCA objective, weights are set as 0.6, 0.2, and 0.2 for normal (wn),
hyper-congestion (wd), and flood (ws) operation conditions, respectively.

Figure 3a shows that the influence of the capacity allocation plan on the shape of MFD is
minor, while the impact of supply disruptions (flood as an example) is significant. We compare
the trip completion rates with the current network state and the “best” capacity allocation state
found by the algorithm in Figure 3b and Figure 3c for hyper-congestion due to extreme demand
and global urban flood scenarios, respectively. The best allocation plan leads to a more stable trip
completion rate under both scenarios compared to the current network state. Figure 3d depicts
an overall comparison of these two capacity allocation plans. The best capacity allocation plan
improves the critical trip completion rate (normal operations) by 0.7%, and mitigate the traffic
resilience loss to hyper-congestion and flood by 17.7% and 33.7%, respectively.
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(a) MFD comparison
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(b) Hyper-congestion
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(d) Loss comparison

Figure 3 – Traffic dynamics and resilience comparisons between current and “best” allocations.

4 DISCUSSION

We constructed a simulation-based capacity allocation optimization (SOCA) problem to inves-
tigate if the existing network structure of the transportation system can be better configured to
make it more resilient to traffic jams during daily operations, unexpected extreme demand, and
supply disruptions. SOCA can be easily adapted to different urban contexts by changing the
weights on different disruption scenarios accordingly. We presented a 2MSPSA algorithm to solve
this kind of MNDP. The preliminary results showed that the algorithm can effectively address
the SOCA problem, and transportation networks indeed can be more resilient by improving the
network capacity allocation.
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