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1     INTRODUCTION 
 

Traffic congestion is a major global problem that costs billions of dollars every year. 

Congestion pricing, which entails higher costs for car users, can incentivize the adoption of 

alternative departure times (Liu et al., 2023), routes (Li and Ramezani, 2022), or modes of 

transportation (Balzer and Leclercq, 2022). 

To study congestion pricing on a large scale, Macroscopic Fundamental Diagrams (MFDs) 

offer a parsimonious regional-scale representation of urban traffic dynamics (Geroliminis 

and Daganzo, 2008). While traditional accumulation-based MFD models have been 

effective for real-time control applications, they lack granularity and do not reflect the 

varying circumstances across travellers. Trip-based MFD models address this limitation and 

offer improved modeling capabilities by providing different trip lengths for every traveler 

(Lamotte and Geroliminis, 2016). However, the absence of a closed-form analytical 

expression in trip-based MFDs besides the challenges in accurately estimating MFD 

parameters (Saffari et al., 2022) necessitates further research in this area. 

To overcome these challenges, data-driven model-free approaches have been proposed 

(Wang and Paccagnan, 2022). However, they also require accurate estimation of network 

parameters such as critical accumulation. Given that the estimation of these parameters is 

susceptible to errors due to multivaluedness, instability, and hysteresis phenomena 

commonly observed in practical network scenarios (Daganzo et al., 2011; Mahmassani et 

al., 2013), further research is necessary to develop a more robust and reliable method.  

Reinforcement Learning (RL) has emerged as a promising solution for addressing complex 

challenges (Sutton and Barto, 2018). Thanks to its model-free nature, it requires minimal 

prior knowledge of environmental dynamics. The introduction of the Deep Q-Networks 

(DQN) algorithm (Mnih et al., 2015) and Double Deep Q-Network (Van Hasselt et al., 2016) 

enable researchers to harness these algorithms for solving large and complex problems.  

This study will examine the impact of pricing on travelers’ mode choices, considering an 

elastic demand and modelling travelers’ choices based on the perceived cost of all available 

alternatives. By utilizing a trip-based MFD as the environment for Reinforcement Learning 

(RL) and employing the DDQN as the RL agent, this paper aims to develop a data-driven 

method to determine an optimal dynamic toll profile. The objective is to maximize network 

throughput or minimize total time spent in a multimodal network by 

encouraging/discouraging the use of certain modes via an imposed toll price. 
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2     Traffic Dynamics and Modeling 
2.1  Traffic Dynamics 
 

A trip based MFD framework has been developed for a single region, representing a 

congested city center. All trips originate and end within the network. The simulation 

considers travelers’ mode choice and offers three main modes: car, public transport (bus), 

and walking. Figure 1 illustrates the link-level representation of a segment of the network 

for each mode considered in this study. The network is structured as a grid, with dimensions 

of 10 by 10. While car and walking modes can effectively use the entire network, public 

transport stops are located every three nodes both in the horizontal and vertical directions. 

This enables a realistic representation of a multimodal network. Note that the link-level 

representation of the network will be used to determine the shortest path and calculate the 

trip distance and travel time associated with each mode. 

A 90-minute demand profile projecting traffic congestion is considered in this study. The 

simulation iterates through the demand list with a step size of one minute. Traveler 

heterogeneity is incorporated by randomly generating origin, destination, and departure time 

for each traveler to be considered. The travel time (𝑇𝑖
𝑐𝑎𝑟) of the car user 𝑖, with trip length 

𝑙𝑖
𝑐𝑎𝑟, departure time 𝑡𝑖, and the speed 𝑉𝑖

𝑐𝑎𝑟 calculated by: 

𝑙𝑖
𝑐𝑎𝑟 =  ∫ 𝑉𝑖

𝑐𝑎𝑟𝑑𝑡
𝑡𝑖+𝑇𝑖

𝑐𝑎𝑟

𝑡𝑖
                                                                                                                        (1) 

The buses are assumed to operate on a designated line with a fixed headway. A reasonable 

constant speed is considered for both the bus and walking modes based on literature.  

 

 

 

 

 

 
 

Figure 1. A portion of network layout, a) car/pedestrian network, b) public transport network, c) integrated network  

2.2  Mode choice 
 

Below are the monetary costs associated with using different modes. The decision-making process 

follows a multinomial logit model, which assumes that users perceive costs independently, with an 

added error term following a Gumbel distribution. 

 

     𝐶𝑖
𝑐𝑎𝑟     = −𝛼𝑇𝑖

𝑐𝑎𝑟 −  𝜏 
 

     𝐶𝑖
𝑤𝑎𝑙𝑘  = −𝛼𝑇𝑖

𝑤𝑎𝑙𝑘                                                                                                                    (2) 
 

     𝐶𝑖
𝑏𝑢𝑠     = −𝛼(𝑇𝑖

𝑏𝑢𝑠 + 𝑇𝑖
𝑤𝑎𝑖𝑡 + 𝑇𝑖

𝑇𝑟𝑎𝑛𝑠𝑖𝑡 + 𝑇𝑖
𝑎𝑐𝑐𝑒𝑠𝑠) 
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Where  𝛼 is the Value of Time (𝑉𝑜𝑇) and 𝜏 represents the toll price. 𝑇𝑖
wait, 𝑇𝑖

Transit represent the 

required time that traveler 𝑖 must wait for the bus and the required time for traveler 𝑖 to change 

direction and board another bus, respectively. Both are uniformly distributed between 0 and the 

bus headway (Daganzo, 2010). Additionally, 𝑇𝑖
𝑎𝑐𝑐𝑒𝑠𝑠 equals sum of entrance and egress time.  

 

3     RL Formulation 
 

A double deep Q-network (DDQN) agent, along with a prioritized experience replay (PER) buffer, 

is used to learn a policy that maximizes the expected return from the start time. Figure 2 provides a 

schematic diagram, illustrating the operation of DDQN. The structure of the reinforcement learning 

(RL) problem is defined as follows: 

• State space: at each time step the agent considers the demand value of the next time step, car 

accumulation, bus accumulation, pedestrian accumulation, previously applied toll as input 

data. 

• Action space: the agent is allowed to take three different actions: increasing toll value by ∆𝜏, 

decreasing toll value by ∆𝜏, and keep the toll value constant. 

• Transition dynamics: these are expressed by traffic dynamics described in section 2.1. 

• Reward function: the scalar reward is defined as the normalized value of network outflow at 

each step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4     Results and Discussion 
 

Figure 3.a depicts the evolution of the agent. Over 250 episodes, the agent reduces total travel time 

by approximately 30%. To maintain car accumulation at critical levels and maximize network 

outflow in the car network (Figure 3.b), the agent applies a toll profile, as shown in Figure 3.c.  

 

 

 

 

 

 

Figure 2. RL structure 

Figure 3. (a) the agent’s evolution, (b) accumulation of each mode at the final stage, (c) toll profile. 
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After training, the agent was tested under various conditions, and a sensitivity analysis was 

conducted on all input data. The results indicate that even with a 20% error in the provided input 

data, the agent can still find the optimum toll profile without impediment. Furthermore, after 

training, the agent was tested under two different conditions: first, with a completely different 

demand profile, and second, with entirely different MFD coefficients. In both cases, the agent 

successfully reduced congestion and operated at critical accumulation levels. 
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